This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catidcl.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| catidcl.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| catidcl.i | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| catidcl.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| catidcl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| catlid.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| catlid.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| catlid.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| Assertion | catrid | ⊢ ( 𝜑 → ( 𝐹 ( 〈 𝑋 , 𝑋 〉 · 𝑌 ) ( 1 ‘ 𝑋 ) ) = 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catidcl.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | catidcl.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | catidcl.i | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 4 | catidcl.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | catidcl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | catlid.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 7 | catlid.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | catlid.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 9 | oveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑌 ) ( 1 ‘ 𝑋 ) ) = ( 𝐹 ( 〈 𝑋 , 𝑋 〉 · 𝑌 ) ( 1 ‘ 𝑋 ) ) ) | |
| 10 | id | ⊢ ( 𝑓 = 𝐹 → 𝑓 = 𝐹 ) | |
| 11 | 9 10 | eqeq12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑌 ) ( 1 ‘ 𝑋 ) ) = 𝑓 ↔ ( 𝐹 ( 〈 𝑋 , 𝑋 〉 · 𝑌 ) ( 1 ‘ 𝑋 ) ) = 𝐹 ) ) |
| 12 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) | |
| 13 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) = ( 〈 𝑋 , 𝑋 〉 · 𝑌 ) ) | |
| 14 | 13 | oveqd | ⊢ ( 𝑦 = 𝑌 → ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) ( 1 ‘ 𝑋 ) ) = ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑌 ) ( 1 ‘ 𝑋 ) ) ) |
| 15 | 14 | eqeq1d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) ( 1 ‘ 𝑋 ) ) = 𝑓 ↔ ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑌 ) ( 1 ‘ 𝑋 ) ) = 𝑓 ) ) |
| 16 | 12 15 | raleqbidv | ⊢ ( 𝑦 = 𝑌 → ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) ( 1 ‘ 𝑋 ) ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑌 ) ( 1 ‘ 𝑋 ) ) = 𝑓 ) ) |
| 17 | simpr | ⊢ ( ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) → ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) | |
| 18 | 17 | ralimi | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) |
| 19 | 18 | a1i | ⊢ ( 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) → ( ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) |
| 20 | 19 | ss2rabi | ⊢ { 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) } ⊆ { 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 } |
| 21 | 1 2 6 4 3 5 | cidval | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( ℩ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
| 22 | 1 2 6 4 5 | catideu | ⊢ ( 𝜑 → ∃! 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) |
| 23 | riotacl2 | ⊢ ( ∃! 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) → ( ℩ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ∈ { 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) } ) | |
| 24 | 22 23 | syl | ⊢ ( 𝜑 → ( ℩ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ∈ { 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) } ) |
| 25 | 21 24 | eqeltrd | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) ∈ { 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) } ) |
| 26 | 20 25 | sselid | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) ∈ { 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 } ) |
| 27 | oveq2 | ⊢ ( 𝑔 = ( 1 ‘ 𝑋 ) → ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) ( 1 ‘ 𝑋 ) ) ) | |
| 28 | 27 | eqeq1d | ⊢ ( 𝑔 = ( 1 ‘ 𝑋 ) → ( ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ↔ ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) ( 1 ‘ 𝑋 ) ) = 𝑓 ) ) |
| 29 | 28 | 2ralbidv | ⊢ ( 𝑔 = ( 1 ‘ 𝑋 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) ( 1 ‘ 𝑋 ) ) = 𝑓 ) ) |
| 30 | 29 | elrab | ⊢ ( ( 1 ‘ 𝑋 ) ∈ { 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 } ↔ ( ( 1 ‘ 𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) ( 1 ‘ 𝑋 ) ) = 𝑓 ) ) |
| 31 | 30 | simprbi | ⊢ ( ( 1 ‘ 𝑋 ) ∈ { 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∣ ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 } → ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) ( 1 ‘ 𝑋 ) ) = 𝑓 ) |
| 32 | 26 31 | syl | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) ( 1 ‘ 𝑋 ) ) = 𝑓 ) |
| 33 | 16 32 7 | rspcdva | ⊢ ( 𝜑 → ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑌 ) ( 1 ‘ 𝑋 ) ) = 𝑓 ) |
| 34 | 11 33 8 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ( 〈 𝑋 , 𝑋 〉 · 𝑌 ) ( 1 ‘ 𝑋 ) ) = 𝐹 ) |