This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the object part of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | curfval.g | ⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) | |
| curfval.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | ||
| curfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| curfval.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| curfval.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) | ||
| curfval.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| curf1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| curf1.k | ⊢ 𝐾 = ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) | ||
| curf1.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | ||
| curf1.1 | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| Assertion | curf1 | ⊢ ( 𝜑 → 𝐾 = 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | curfval.g | ⊢ 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF 𝐹 ) | |
| 2 | curfval.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 3 | curfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | curfval.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 5 | curfval.f | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) | |
| 6 | curfval.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 7 | curf1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 8 | curf1.k | ⊢ 𝐾 = ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) | |
| 9 | curf1.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | |
| 10 | curf1.1 | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 11 | 1 2 3 4 5 6 9 10 | curf1fval | ⊢ ( 𝜑 → ( 1st ‘ 𝐺 ) = ( 𝑥 ∈ 𝐴 ↦ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 ) | |
| 13 | 12 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) = ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ) |
| 14 | 13 | mpteq2dv | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ) ) |
| 15 | simp1r | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → 𝑥 = 𝑋 ) | |
| 16 | 15 | opeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → 〈 𝑥 , 𝑦 〉 = 〈 𝑋 , 𝑦 〉 ) |
| 17 | 15 | opeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → 〈 𝑥 , 𝑧 〉 = 〈 𝑋 , 𝑧 〉 ) |
| 18 | 16 17 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) = ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) ) |
| 19 | 15 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 1 ‘ 𝑥 ) = ( 1 ‘ 𝑋 ) ) |
| 20 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → 𝑔 = 𝑔 ) | |
| 21 | 18 19 20 | oveq123d | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) = ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) |
| 22 | 21 | mpteq2dv | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) = ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) |
| 23 | 22 | mpoeq3dva | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) ) |
| 24 | 14 23 | opeq12d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑥 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑥 ) ( 〈 𝑥 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑥 , 𝑧 〉 ) 𝑔 ) ) ) 〉 = 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) |
| 25 | opex | ⊢ 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ∈ V | |
| 26 | 25 | a1i | ⊢ ( 𝜑 → 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ∈ V ) |
| 27 | 11 24 7 26 | fvmptd | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐺 ) ‘ 𝑋 ) = 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) |
| 28 | 8 27 | eqtrid | ⊢ ( 𝜑 → 𝐾 = 〈 ( 𝑦 ∈ 𝐵 ↦ ( 𝑋 ( 1st ‘ 𝐹 ) 𝑦 ) ) , ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ↦ ( ( 1 ‘ 𝑋 ) ( 〈 𝑋 , 𝑦 〉 ( 2nd ‘ 𝐹 ) 〈 𝑋 , 𝑧 〉 ) 𝑔 ) ) ) 〉 ) |