This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of all elements whose complement is dominated by the base set is a filter. (Contributed by Mario Carneiro, 14-Dec-2013) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csdfil | ⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ≺ 𝑋 } ∈ ( Fil ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑋 ∖ 𝑥 ) = ( 𝑋 ∖ 𝑦 ) ) | |
| 2 | 1 | breq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑋 ∖ 𝑥 ) ≺ 𝑋 ↔ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ) ) |
| 3 | 2 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ≺ 𝑋 } ↔ ( 𝑦 ∈ 𝒫 𝑋 ∧ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ) ) |
| 4 | velpw | ⊢ ( 𝑦 ∈ 𝒫 𝑋 ↔ 𝑦 ⊆ 𝑋 ) | |
| 5 | 4 | anbi1i | ⊢ ( ( 𝑦 ∈ 𝒫 𝑋 ∧ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ) ↔ ( 𝑦 ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ) ) |
| 6 | 3 5 | bitri | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ≺ 𝑋 } ↔ ( 𝑦 ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ) ) |
| 7 | 6 | a1i | ⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ≺ 𝑋 } ↔ ( 𝑦 ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ) ) ) |
| 8 | simpl | ⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → 𝑋 ∈ dom card ) | |
| 9 | difid | ⊢ ( 𝑋 ∖ 𝑋 ) = ∅ | |
| 10 | infn0 | ⊢ ( ω ≼ 𝑋 → 𝑋 ≠ ∅ ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → 𝑋 ≠ ∅ ) |
| 12 | 0sdomg | ⊢ ( 𝑋 ∈ dom card → ( ∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅ ) ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ( ∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅ ) ) |
| 14 | 11 13 | mpbird | ⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ∅ ≺ 𝑋 ) |
| 15 | 9 14 | eqbrtrid | ⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ( 𝑋 ∖ 𝑋 ) ≺ 𝑋 ) |
| 16 | difeq2 | ⊢ ( 𝑦 = 𝑋 → ( 𝑋 ∖ 𝑦 ) = ( 𝑋 ∖ 𝑋 ) ) | |
| 17 | 16 | breq1d | ⊢ ( 𝑦 = 𝑋 → ( ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ ( 𝑋 ∖ 𝑋 ) ≺ 𝑋 ) ) |
| 18 | 17 | sbcieg | ⊢ ( 𝑋 ∈ dom card → ( [ 𝑋 / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ ( 𝑋 ∖ 𝑋 ) ≺ 𝑋 ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ( [ 𝑋 / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ ( 𝑋 ∖ 𝑋 ) ≺ 𝑋 ) ) |
| 20 | 15 19 | mpbird | ⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → [ 𝑋 / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ) |
| 21 | sdomirr | ⊢ ¬ 𝑋 ≺ 𝑋 | |
| 22 | 0ex | ⊢ ∅ ∈ V | |
| 23 | difeq2 | ⊢ ( 𝑦 = ∅ → ( 𝑋 ∖ 𝑦 ) = ( 𝑋 ∖ ∅ ) ) | |
| 24 | dif0 | ⊢ ( 𝑋 ∖ ∅ ) = 𝑋 | |
| 25 | 23 24 | eqtrdi | ⊢ ( 𝑦 = ∅ → ( 𝑋 ∖ 𝑦 ) = 𝑋 ) |
| 26 | 25 | breq1d | ⊢ ( 𝑦 = ∅ → ( ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ 𝑋 ≺ 𝑋 ) ) |
| 27 | 22 26 | sbcie | ⊢ ( [ ∅ / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ 𝑋 ≺ 𝑋 ) |
| 28 | 27 | a1i | ⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ( [ ∅ / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ 𝑋 ≺ 𝑋 ) ) |
| 29 | 21 28 | mtbiri | ⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ¬ [ ∅ / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ) |
| 30 | simp1l | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑧 ) → 𝑋 ∈ dom card ) | |
| 31 | 30 | difexd | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑧 ) → ( 𝑋 ∖ 𝑤 ) ∈ V ) |
| 32 | sscon | ⊢ ( 𝑤 ⊆ 𝑧 → ( 𝑋 ∖ 𝑧 ) ⊆ ( 𝑋 ∖ 𝑤 ) ) | |
| 33 | 32 | 3ad2ant3 | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑧 ) → ( 𝑋 ∖ 𝑧 ) ⊆ ( 𝑋 ∖ 𝑤 ) ) |
| 34 | ssdomg | ⊢ ( ( 𝑋 ∖ 𝑤 ) ∈ V → ( ( 𝑋 ∖ 𝑧 ) ⊆ ( 𝑋 ∖ 𝑤 ) → ( 𝑋 ∖ 𝑧 ) ≼ ( 𝑋 ∖ 𝑤 ) ) ) | |
| 35 | 31 33 34 | sylc | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑧 ) → ( 𝑋 ∖ 𝑧 ) ≼ ( 𝑋 ∖ 𝑤 ) ) |
| 36 | domsdomtr | ⊢ ( ( ( 𝑋 ∖ 𝑧 ) ≼ ( 𝑋 ∖ 𝑤 ) ∧ ( 𝑋 ∖ 𝑤 ) ≺ 𝑋 ) → ( 𝑋 ∖ 𝑧 ) ≺ 𝑋 ) | |
| 37 | 36 | ex | ⊢ ( ( 𝑋 ∖ 𝑧 ) ≼ ( 𝑋 ∖ 𝑤 ) → ( ( 𝑋 ∖ 𝑤 ) ≺ 𝑋 → ( 𝑋 ∖ 𝑧 ) ≺ 𝑋 ) ) |
| 38 | 35 37 | syl | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑧 ) → ( ( 𝑋 ∖ 𝑤 ) ≺ 𝑋 → ( 𝑋 ∖ 𝑧 ) ≺ 𝑋 ) ) |
| 39 | vex | ⊢ 𝑤 ∈ V | |
| 40 | difeq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑋 ∖ 𝑦 ) = ( 𝑋 ∖ 𝑤 ) ) | |
| 41 | 40 | breq1d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ ( 𝑋 ∖ 𝑤 ) ≺ 𝑋 ) ) |
| 42 | 39 41 | sbcie | ⊢ ( [ 𝑤 / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ ( 𝑋 ∖ 𝑤 ) ≺ 𝑋 ) |
| 43 | vex | ⊢ 𝑧 ∈ V | |
| 44 | difeq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑋 ∖ 𝑦 ) = ( 𝑋 ∖ 𝑧 ) ) | |
| 45 | 44 | breq1d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ ( 𝑋 ∖ 𝑧 ) ≺ 𝑋 ) ) |
| 46 | 43 45 | sbcie | ⊢ ( [ 𝑧 / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ ( 𝑋 ∖ 𝑧 ) ≺ 𝑋 ) |
| 47 | 38 42 46 | 3imtr4g | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑧 ) → ( [ 𝑤 / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 → [ 𝑧 / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ) ) |
| 48 | infunsdom | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( ( 𝑋 ∖ 𝑧 ) ≺ 𝑋 ∧ ( 𝑋 ∖ 𝑤 ) ≺ 𝑋 ) ) → ( ( 𝑋 ∖ 𝑧 ) ∪ ( 𝑋 ∖ 𝑤 ) ) ≺ 𝑋 ) | |
| 49 | 48 | ex | ⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ( ( ( 𝑋 ∖ 𝑧 ) ≺ 𝑋 ∧ ( 𝑋 ∖ 𝑤 ) ≺ 𝑋 ) → ( ( 𝑋 ∖ 𝑧 ) ∪ ( 𝑋 ∖ 𝑤 ) ) ≺ 𝑋 ) ) |
| 50 | difindi | ⊢ ( 𝑋 ∖ ( 𝑧 ∩ 𝑤 ) ) = ( ( 𝑋 ∖ 𝑧 ) ∪ ( 𝑋 ∖ 𝑤 ) ) | |
| 51 | 50 | breq1i | ⊢ ( ( 𝑋 ∖ ( 𝑧 ∩ 𝑤 ) ) ≺ 𝑋 ↔ ( ( 𝑋 ∖ 𝑧 ) ∪ ( 𝑋 ∖ 𝑤 ) ) ≺ 𝑋 ) |
| 52 | 49 51 | imbitrrdi | ⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ( ( ( 𝑋 ∖ 𝑧 ) ≺ 𝑋 ∧ ( 𝑋 ∖ 𝑤 ) ≺ 𝑋 ) → ( 𝑋 ∖ ( 𝑧 ∩ 𝑤 ) ) ≺ 𝑋 ) ) |
| 53 | 52 | 3ad2ant1 | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑋 ) → ( ( ( 𝑋 ∖ 𝑧 ) ≺ 𝑋 ∧ ( 𝑋 ∖ 𝑤 ) ≺ 𝑋 ) → ( 𝑋 ∖ ( 𝑧 ∩ 𝑤 ) ) ≺ 𝑋 ) ) |
| 54 | 46 42 | anbi12i | ⊢ ( ( [ 𝑧 / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ∧ [ 𝑤 / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ) ↔ ( ( 𝑋 ∖ 𝑧 ) ≺ 𝑋 ∧ ( 𝑋 ∖ 𝑤 ) ≺ 𝑋 ) ) |
| 55 | 43 | inex1 | ⊢ ( 𝑧 ∩ 𝑤 ) ∈ V |
| 56 | difeq2 | ⊢ ( 𝑦 = ( 𝑧 ∩ 𝑤 ) → ( 𝑋 ∖ 𝑦 ) = ( 𝑋 ∖ ( 𝑧 ∩ 𝑤 ) ) ) | |
| 57 | 56 | breq1d | ⊢ ( 𝑦 = ( 𝑧 ∩ 𝑤 ) → ( ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ ( 𝑋 ∖ ( 𝑧 ∩ 𝑤 ) ) ≺ 𝑋 ) ) |
| 58 | 55 57 | sbcie | ⊢ ( [ ( 𝑧 ∩ 𝑤 ) / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ ( 𝑋 ∖ ( 𝑧 ∩ 𝑤 ) ) ≺ 𝑋 ) |
| 59 | 53 54 58 | 3imtr4g | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑋 ) → ( ( [ 𝑧 / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ∧ [ 𝑤 / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ) → [ ( 𝑧 ∩ 𝑤 ) / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ) ) |
| 60 | 7 8 20 29 47 59 | isfild | ⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ≺ 𝑋 } ∈ ( Fil ‘ 𝑋 ) ) |