This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of all elements whose complement is dominated by the base set is a filter. (Contributed by Mario Carneiro, 14-Dec-2013) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csdfil | |- ( ( X e. dom card /\ _om ~<_ X ) -> { x e. ~P X | ( X \ x ) ~< X } e. ( Fil ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq2 | |- ( x = y -> ( X \ x ) = ( X \ y ) ) |
|
| 2 | 1 | breq1d | |- ( x = y -> ( ( X \ x ) ~< X <-> ( X \ y ) ~< X ) ) |
| 3 | 2 | elrab | |- ( y e. { x e. ~P X | ( X \ x ) ~< X } <-> ( y e. ~P X /\ ( X \ y ) ~< X ) ) |
| 4 | velpw | |- ( y e. ~P X <-> y C_ X ) |
|
| 5 | 4 | anbi1i | |- ( ( y e. ~P X /\ ( X \ y ) ~< X ) <-> ( y C_ X /\ ( X \ y ) ~< X ) ) |
| 6 | 3 5 | bitri | |- ( y e. { x e. ~P X | ( X \ x ) ~< X } <-> ( y C_ X /\ ( X \ y ) ~< X ) ) |
| 7 | 6 | a1i | |- ( ( X e. dom card /\ _om ~<_ X ) -> ( y e. { x e. ~P X | ( X \ x ) ~< X } <-> ( y C_ X /\ ( X \ y ) ~< X ) ) ) |
| 8 | simpl | |- ( ( X e. dom card /\ _om ~<_ X ) -> X e. dom card ) |
|
| 9 | difid | |- ( X \ X ) = (/) |
|
| 10 | infn0 | |- ( _om ~<_ X -> X =/= (/) ) |
|
| 11 | 10 | adantl | |- ( ( X e. dom card /\ _om ~<_ X ) -> X =/= (/) ) |
| 12 | 0sdomg | |- ( X e. dom card -> ( (/) ~< X <-> X =/= (/) ) ) |
|
| 13 | 12 | adantr | |- ( ( X e. dom card /\ _om ~<_ X ) -> ( (/) ~< X <-> X =/= (/) ) ) |
| 14 | 11 13 | mpbird | |- ( ( X e. dom card /\ _om ~<_ X ) -> (/) ~< X ) |
| 15 | 9 14 | eqbrtrid | |- ( ( X e. dom card /\ _om ~<_ X ) -> ( X \ X ) ~< X ) |
| 16 | difeq2 | |- ( y = X -> ( X \ y ) = ( X \ X ) ) |
|
| 17 | 16 | breq1d | |- ( y = X -> ( ( X \ y ) ~< X <-> ( X \ X ) ~< X ) ) |
| 18 | 17 | sbcieg | |- ( X e. dom card -> ( [. X / y ]. ( X \ y ) ~< X <-> ( X \ X ) ~< X ) ) |
| 19 | 18 | adantr | |- ( ( X e. dom card /\ _om ~<_ X ) -> ( [. X / y ]. ( X \ y ) ~< X <-> ( X \ X ) ~< X ) ) |
| 20 | 15 19 | mpbird | |- ( ( X e. dom card /\ _om ~<_ X ) -> [. X / y ]. ( X \ y ) ~< X ) |
| 21 | sdomirr | |- -. X ~< X |
|
| 22 | 0ex | |- (/) e. _V |
|
| 23 | difeq2 | |- ( y = (/) -> ( X \ y ) = ( X \ (/) ) ) |
|
| 24 | dif0 | |- ( X \ (/) ) = X |
|
| 25 | 23 24 | eqtrdi | |- ( y = (/) -> ( X \ y ) = X ) |
| 26 | 25 | breq1d | |- ( y = (/) -> ( ( X \ y ) ~< X <-> X ~< X ) ) |
| 27 | 22 26 | sbcie | |- ( [. (/) / y ]. ( X \ y ) ~< X <-> X ~< X ) |
| 28 | 27 | a1i | |- ( ( X e. dom card /\ _om ~<_ X ) -> ( [. (/) / y ]. ( X \ y ) ~< X <-> X ~< X ) ) |
| 29 | 21 28 | mtbiri | |- ( ( X e. dom card /\ _om ~<_ X ) -> -. [. (/) / y ]. ( X \ y ) ~< X ) |
| 30 | simp1l | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ z C_ X /\ w C_ z ) -> X e. dom card ) |
|
| 31 | 30 | difexd | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ z C_ X /\ w C_ z ) -> ( X \ w ) e. _V ) |
| 32 | sscon | |- ( w C_ z -> ( X \ z ) C_ ( X \ w ) ) |
|
| 33 | 32 | 3ad2ant3 | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ z C_ X /\ w C_ z ) -> ( X \ z ) C_ ( X \ w ) ) |
| 34 | ssdomg | |- ( ( X \ w ) e. _V -> ( ( X \ z ) C_ ( X \ w ) -> ( X \ z ) ~<_ ( X \ w ) ) ) |
|
| 35 | 31 33 34 | sylc | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ z C_ X /\ w C_ z ) -> ( X \ z ) ~<_ ( X \ w ) ) |
| 36 | domsdomtr | |- ( ( ( X \ z ) ~<_ ( X \ w ) /\ ( X \ w ) ~< X ) -> ( X \ z ) ~< X ) |
|
| 37 | 36 | ex | |- ( ( X \ z ) ~<_ ( X \ w ) -> ( ( X \ w ) ~< X -> ( X \ z ) ~< X ) ) |
| 38 | 35 37 | syl | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ z C_ X /\ w C_ z ) -> ( ( X \ w ) ~< X -> ( X \ z ) ~< X ) ) |
| 39 | vex | |- w e. _V |
|
| 40 | difeq2 | |- ( y = w -> ( X \ y ) = ( X \ w ) ) |
|
| 41 | 40 | breq1d | |- ( y = w -> ( ( X \ y ) ~< X <-> ( X \ w ) ~< X ) ) |
| 42 | 39 41 | sbcie | |- ( [. w / y ]. ( X \ y ) ~< X <-> ( X \ w ) ~< X ) |
| 43 | vex | |- z e. _V |
|
| 44 | difeq2 | |- ( y = z -> ( X \ y ) = ( X \ z ) ) |
|
| 45 | 44 | breq1d | |- ( y = z -> ( ( X \ y ) ~< X <-> ( X \ z ) ~< X ) ) |
| 46 | 43 45 | sbcie | |- ( [. z / y ]. ( X \ y ) ~< X <-> ( X \ z ) ~< X ) |
| 47 | 38 42 46 | 3imtr4g | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ z C_ X /\ w C_ z ) -> ( [. w / y ]. ( X \ y ) ~< X -> [. z / y ]. ( X \ y ) ~< X ) ) |
| 48 | infunsdom | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( ( X \ z ) ~< X /\ ( X \ w ) ~< X ) ) -> ( ( X \ z ) u. ( X \ w ) ) ~< X ) |
|
| 49 | 48 | ex | |- ( ( X e. dom card /\ _om ~<_ X ) -> ( ( ( X \ z ) ~< X /\ ( X \ w ) ~< X ) -> ( ( X \ z ) u. ( X \ w ) ) ~< X ) ) |
| 50 | difindi | |- ( X \ ( z i^i w ) ) = ( ( X \ z ) u. ( X \ w ) ) |
|
| 51 | 50 | breq1i | |- ( ( X \ ( z i^i w ) ) ~< X <-> ( ( X \ z ) u. ( X \ w ) ) ~< X ) |
| 52 | 49 51 | imbitrrdi | |- ( ( X e. dom card /\ _om ~<_ X ) -> ( ( ( X \ z ) ~< X /\ ( X \ w ) ~< X ) -> ( X \ ( z i^i w ) ) ~< X ) ) |
| 53 | 52 | 3ad2ant1 | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ z C_ X /\ w C_ X ) -> ( ( ( X \ z ) ~< X /\ ( X \ w ) ~< X ) -> ( X \ ( z i^i w ) ) ~< X ) ) |
| 54 | 46 42 | anbi12i | |- ( ( [. z / y ]. ( X \ y ) ~< X /\ [. w / y ]. ( X \ y ) ~< X ) <-> ( ( X \ z ) ~< X /\ ( X \ w ) ~< X ) ) |
| 55 | 43 | inex1 | |- ( z i^i w ) e. _V |
| 56 | difeq2 | |- ( y = ( z i^i w ) -> ( X \ y ) = ( X \ ( z i^i w ) ) ) |
|
| 57 | 56 | breq1d | |- ( y = ( z i^i w ) -> ( ( X \ y ) ~< X <-> ( X \ ( z i^i w ) ) ~< X ) ) |
| 58 | 55 57 | sbcie | |- ( [. ( z i^i w ) / y ]. ( X \ y ) ~< X <-> ( X \ ( z i^i w ) ) ~< X ) |
| 59 | 53 54 58 | 3imtr4g | |- ( ( ( X e. dom card /\ _om ~<_ X ) /\ z C_ X /\ w C_ X ) -> ( ( [. z / y ]. ( X \ y ) ~< X /\ [. w / y ]. ( X \ y ) ~< X ) -> [. ( z i^i w ) / y ]. ( X \ y ) ~< X ) ) |
| 60 | 7 8 20 29 47 59 | isfild | |- ( ( X e. dom card /\ _om ~<_ X ) -> { x e. ~P X | ( X \ x ) ~< X } e. ( Fil ` X ) ) |