This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for a set of the form { x e. ~P A | ph } to be a filter. (Contributed by Mario Carneiro, 1-Dec-2013) (Revised by Stefan O'Rear, 2-Aug-2015) (Revised by AV, 10-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfild.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐹 ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝜓 ) ) ) | |
| isfild.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| isfild.3 | ⊢ ( 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) | ||
| isfild.4 | ⊢ ( 𝜑 → ¬ [ ∅ / 𝑥 ] 𝜓 ) | ||
| isfild.5 | ⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝑦 ) → ( [ 𝑧 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜓 ) ) | ||
| isfild.6 | ⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐴 ) → ( ( [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) → [ ( 𝑦 ∩ 𝑧 ) / 𝑥 ] 𝜓 ) ) | ||
| Assertion | isfild | ⊢ ( 𝜑 → 𝐹 ∈ ( Fil ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfild.1 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐹 ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝜓 ) ) ) | |
| 2 | isfild.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | isfild.3 | ⊢ ( 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) | |
| 4 | isfild.4 | ⊢ ( 𝜑 → ¬ [ ∅ / 𝑥 ] 𝜓 ) | |
| 5 | isfild.5 | ⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝑦 ) → ( [ 𝑧 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜓 ) ) | |
| 6 | isfild.6 | ⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐴 ) → ( ( [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) → [ ( 𝑦 ∩ 𝑧 ) / 𝑥 ] 𝜓 ) ) | |
| 7 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) | |
| 8 | 7 | biimpri | ⊢ ( 𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝒫 𝐴 ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝜓 ) → 𝑥 ∈ 𝒫 𝐴 ) |
| 10 | 1 9 | biimtrdi | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐹 → 𝑥 ∈ 𝒫 𝐴 ) ) |
| 11 | 10 | ssrdv | ⊢ ( 𝜑 → 𝐹 ⊆ 𝒫 𝐴 ) |
| 12 | 1 2 | isfildlem | ⊢ ( 𝜑 → ( ∅ ∈ 𝐹 ↔ ( ∅ ⊆ 𝐴 ∧ [ ∅ / 𝑥 ] 𝜓 ) ) ) |
| 13 | simpr | ⊢ ( ( ∅ ⊆ 𝐴 ∧ [ ∅ / 𝑥 ] 𝜓 ) → [ ∅ / 𝑥 ] 𝜓 ) | |
| 14 | 12 13 | biimtrdi | ⊢ ( 𝜑 → ( ∅ ∈ 𝐹 → [ ∅ / 𝑥 ] 𝜓 ) ) |
| 15 | 4 14 | mtod | ⊢ ( 𝜑 → ¬ ∅ ∈ 𝐹 ) |
| 16 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 17 | 3 16 | jctil | ⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐴 ∧ [ 𝐴 / 𝑥 ] 𝜓 ) ) |
| 18 | 1 2 | isfildlem | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝐹 ↔ ( 𝐴 ⊆ 𝐴 ∧ [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |
| 19 | 17 18 | mpbird | ⊢ ( 𝜑 → 𝐴 ∈ 𝐹 ) |
| 20 | 11 15 19 | 3jca | ⊢ ( 𝜑 → ( 𝐹 ⊆ 𝒫 𝐴 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝐴 ∈ 𝐹 ) ) |
| 21 | elpwi | ⊢ ( 𝑦 ∈ 𝒫 𝐴 → 𝑦 ⊆ 𝐴 ) | |
| 22 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝑦 ) → 𝑦 ⊆ 𝐴 ) | |
| 23 | 5 22 | jctild | ⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝑦 ) → ( [ 𝑧 / 𝑥 ] 𝜓 → ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |
| 24 | 23 | adantld | ⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝑦 ) → ( ( 𝑧 ⊆ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) → ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |
| 25 | 1 2 | isfildlem | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐹 ↔ ( 𝑧 ⊆ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) ) ) |
| 26 | 25 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝑦 ) → ( 𝑧 ∈ 𝐹 ↔ ( 𝑧 ⊆ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) ) ) |
| 27 | 1 2 | isfildlem | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐹 ↔ ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |
| 28 | 27 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝑦 ) → ( 𝑦 ∈ 𝐹 ↔ ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |
| 29 | 24 26 28 | 3imtr4d | ⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝑦 ) → ( 𝑧 ∈ 𝐹 → 𝑦 ∈ 𝐹 ) ) |
| 30 | 29 | 3expa | ⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑧 ⊆ 𝑦 ) → ( 𝑧 ∈ 𝐹 → 𝑦 ∈ 𝐹 ) ) |
| 31 | 30 | impancom | ⊢ ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑧 ∈ 𝐹 ) → ( 𝑧 ⊆ 𝑦 → 𝑦 ∈ 𝐹 ) ) |
| 32 | 31 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) → ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 → 𝑦 ∈ 𝐹 ) ) |
| 33 | 32 | ex | ⊢ ( 𝜑 → ( 𝑦 ⊆ 𝐴 → ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 → 𝑦 ∈ 𝐹 ) ) ) |
| 34 | 21 33 | syl5 | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝒫 𝐴 → ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 → 𝑦 ∈ 𝐹 ) ) ) |
| 35 | 34 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝒫 𝐴 ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 → 𝑦 ∈ 𝐹 ) ) |
| 36 | ssinss1 | ⊢ ( 𝑦 ⊆ 𝐴 → ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ) | |
| 37 | 36 | ad2antrr | ⊢ ( ( ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ∧ ( 𝑧 ⊆ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) ) → ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ) |
| 38 | 37 | a1i | ⊢ ( 𝜑 → ( ( ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ∧ ( 𝑧 ⊆ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) ) → ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ) ) |
| 39 | an4 | ⊢ ( ( ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ∧ ( 𝑧 ⊆ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) ) ↔ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐴 ) ∧ ( [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) ) ) | |
| 40 | 6 | 3expb | ⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐴 ) ) → ( ( [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) → [ ( 𝑦 ∩ 𝑧 ) / 𝑥 ] 𝜓 ) ) |
| 41 | 40 | expimpd | ⊢ ( 𝜑 → ( ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐴 ) ∧ ( [ 𝑦 / 𝑥 ] 𝜓 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) ) → [ ( 𝑦 ∩ 𝑧 ) / 𝑥 ] 𝜓 ) ) |
| 42 | 39 41 | biimtrid | ⊢ ( 𝜑 → ( ( ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ∧ ( 𝑧 ⊆ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) ) → [ ( 𝑦 ∩ 𝑧 ) / 𝑥 ] 𝜓 ) ) |
| 43 | 38 42 | jcad | ⊢ ( 𝜑 → ( ( ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ∧ ( 𝑧 ⊆ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) ) → ( ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ∧ [ ( 𝑦 ∩ 𝑧 ) / 𝑥 ] 𝜓 ) ) ) |
| 44 | 27 25 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) ↔ ( ( 𝑦 ⊆ 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ∧ ( 𝑧 ⊆ 𝐴 ∧ [ 𝑧 / 𝑥 ] 𝜓 ) ) ) ) |
| 45 | 1 2 | isfildlem | ⊢ ( 𝜑 → ( ( 𝑦 ∩ 𝑧 ) ∈ 𝐹 ↔ ( ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ∧ [ ( 𝑦 ∩ 𝑧 ) / 𝑥 ] 𝜓 ) ) ) |
| 46 | 43 44 45 | 3imtr4d | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹 ) → ( 𝑦 ∩ 𝑧 ) ∈ 𝐹 ) ) |
| 47 | 46 | ralrimivv | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝐹 ( 𝑦 ∩ 𝑧 ) ∈ 𝐹 ) |
| 48 | isfil2 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝐴 ) ↔ ( ( 𝐹 ⊆ 𝒫 𝐴 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝐴 ∈ 𝐹 ) ∧ ∀ 𝑦 ∈ 𝒫 𝐴 ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 → 𝑦 ∈ 𝐹 ) ∧ ∀ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝐹 ( 𝑦 ∩ 𝑧 ) ∈ 𝐹 ) ) | |
| 49 | 20 35 47 48 | syl3anbrc | ⊢ ( 𝜑 → 𝐹 ∈ ( Fil ‘ 𝐴 ) ) |