This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two sets that are strictly dominated by the infinite set X is also strictly dominated by X . (Contributed by Mario Carneiro, 3-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infunsdom | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom | ⊢ ( 𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵 ) | |
| 2 | infunsdom1 | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) | |
| 3 | 2 | anass1rs | ⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝐵 ≺ 𝑋 ) ∧ 𝐴 ≼ 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
| 4 | 3 | adantlrl | ⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) ∧ 𝐴 ≼ 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
| 5 | 1 4 | sylan2 | ⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) ∧ 𝐴 ≺ 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
| 6 | simpll | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) → 𝑋 ∈ dom card ) | |
| 7 | sdomdom | ⊢ ( 𝐵 ≺ 𝑋 → 𝐵 ≼ 𝑋 ) | |
| 8 | 7 | ad2antll | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) → 𝐵 ≼ 𝑋 ) |
| 9 | numdom | ⊢ ( ( 𝑋 ∈ dom card ∧ 𝐵 ≼ 𝑋 ) → 𝐵 ∈ dom card ) | |
| 10 | 6 8 9 | syl2anc | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) → 𝐵 ∈ dom card ) |
| 11 | sdomdom | ⊢ ( 𝐴 ≺ 𝑋 → 𝐴 ≼ 𝑋 ) | |
| 12 | 11 | ad2antrl | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) → 𝐴 ≼ 𝑋 ) |
| 13 | numdom | ⊢ ( ( 𝑋 ∈ dom card ∧ 𝐴 ≼ 𝑋 ) → 𝐴 ∈ dom card ) | |
| 14 | 6 12 13 | syl2anc | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) → 𝐴 ∈ dom card ) |
| 15 | domtri2 | ⊢ ( ( 𝐵 ∈ dom card ∧ 𝐴 ∈ dom card ) → ( 𝐵 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝐵 ) ) | |
| 16 | 10 14 15 | syl2anc | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) → ( 𝐵 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝐵 ) ) |
| 17 | 16 | biimpar | ⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) ∧ ¬ 𝐴 ≺ 𝐵 ) → 𝐵 ≼ 𝐴 ) |
| 18 | uncom | ⊢ ( 𝐴 ∪ 𝐵 ) = ( 𝐵 ∪ 𝐴 ) | |
| 19 | infunsdom1 | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐵 ≼ 𝐴 ∧ 𝐴 ≺ 𝑋 ) ) → ( 𝐵 ∪ 𝐴 ) ≺ 𝑋 ) | |
| 20 | 18 19 | eqbrtrid | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐵 ≼ 𝐴 ∧ 𝐴 ≺ 𝑋 ) ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
| 21 | 20 | anass1rs | ⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝐴 ≺ 𝑋 ) ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
| 22 | 21 | adantlrr | ⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
| 23 | 17 22 | syldan | ⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) ∧ ¬ 𝐴 ≺ 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
| 24 | 5 23 | pm2.61dan | ⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |