This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Coefficient vector of a polynomial multiplied on the right by a term. (Contributed by Stefan O'Rear, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1tm.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| coe1tm.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| coe1tm.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| coe1tm.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | ||
| coe1tm.m | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | ||
| coe1tm.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) | ||
| coe1tm.e | ⊢ ↑ = ( .g ‘ 𝑁 ) | ||
| coe1tmmul.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| coe1tmmul.t | ⊢ ∙ = ( .r ‘ 𝑃 ) | ||
| coe1tmmul.u | ⊢ × = ( .r ‘ 𝑅 ) | ||
| coe1tmmul.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | ||
| coe1tmmul.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| coe1tmmul.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) | ||
| coe1tmmul.d | ⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) | ||
| Assertion | coe1tmmul2 | ⊢ ( 𝜑 → ( coe1 ‘ ( 𝐴 ∙ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝐷 ≤ 𝑥 , ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) × 𝐶 ) , 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1tm.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 2 | coe1tm.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 3 | coe1tm.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 4 | coe1tm.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 5 | coe1tm.m | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | |
| 6 | coe1tm.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) | |
| 7 | coe1tm.e | ⊢ ↑ = ( .g ‘ 𝑁 ) | |
| 8 | coe1tmmul.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 9 | coe1tmmul.t | ⊢ ∙ = ( .r ‘ 𝑃 ) | |
| 10 | coe1tmmul.u | ⊢ × = ( .r ‘ 𝑅 ) | |
| 11 | coe1tmmul.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| 12 | coe1tmmul.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 13 | coe1tmmul.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) | |
| 14 | coe1tmmul.d | ⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) | |
| 15 | 2 3 4 5 6 7 8 | ply1tmcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 16 | 12 13 14 15 | syl3anc | ⊢ ( 𝜑 → ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 17 | 3 9 10 8 | coe1mul | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐵 ∧ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∈ 𝐵 ) → ( coe1 ‘ ( 𝐴 ∙ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ) = ( 𝑥 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) ) ) |
| 18 | 12 11 16 17 | syl3anc | ⊢ ( 𝜑 → ( coe1 ‘ ( 𝐴 ∙ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ) = ( 𝑥 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) ) ) |
| 19 | eqeq2 | ⊢ ( ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) × 𝐶 ) = if ( 𝐷 ≤ 𝑥 , ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) × 𝐶 ) , 0 ) → ( ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) = ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) × 𝐶 ) ↔ ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) = if ( 𝐷 ≤ 𝑥 , ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) × 𝐶 ) , 0 ) ) ) | |
| 20 | eqeq2 | ⊢ ( 0 = if ( 𝐷 ≤ 𝑥 , ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) × 𝐶 ) , 0 ) → ( ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) = 0 ↔ ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) = if ( 𝐷 ≤ 𝑥 , ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) × 𝐶 ) , 0 ) ) ) | |
| 21 | 12 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → 𝑅 ∈ Ring ) |
| 22 | ringmnd | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) | |
| 23 | 21 22 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → 𝑅 ∈ Mnd ) |
| 24 | ovex | ⊢ ( 0 ... 𝑥 ) ∈ V | |
| 25 | 24 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → ( 0 ... 𝑥 ) ∈ V ) |
| 26 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → 𝐷 ≤ 𝑥 ) | |
| 27 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → 𝐷 ∈ ℕ0 ) |
| 28 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → 𝑥 ∈ ℕ0 ) | |
| 29 | nn0sub | ⊢ ( ( 𝐷 ∈ ℕ0 ∧ 𝑥 ∈ ℕ0 ) → ( 𝐷 ≤ 𝑥 ↔ ( 𝑥 − 𝐷 ) ∈ ℕ0 ) ) | |
| 30 | 27 28 29 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝐷 ≤ 𝑥 ↔ ( 𝑥 − 𝐷 ) ∈ ℕ0 ) ) |
| 31 | 26 30 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑥 − 𝐷 ) ∈ ℕ0 ) |
| 32 | 27 | nn0ge0d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → 0 ≤ 𝐷 ) |
| 33 | nn0re | ⊢ ( 𝑥 ∈ ℕ0 → 𝑥 ∈ ℝ ) | |
| 34 | 33 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
| 35 | 14 | nn0red | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 36 | 35 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → 𝐷 ∈ ℝ ) |
| 37 | 34 36 | subge02d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → ( 0 ≤ 𝐷 ↔ ( 𝑥 − 𝐷 ) ≤ 𝑥 ) ) |
| 38 | 32 37 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑥 − 𝐷 ) ≤ 𝑥 ) |
| 39 | fznn0 | ⊢ ( 𝑥 ∈ ℕ0 → ( ( 𝑥 − 𝐷 ) ∈ ( 0 ... 𝑥 ) ↔ ( ( 𝑥 − 𝐷 ) ∈ ℕ0 ∧ ( 𝑥 − 𝐷 ) ≤ 𝑥 ) ) ) | |
| 40 | 39 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → ( ( 𝑥 − 𝐷 ) ∈ ( 0 ... 𝑥 ) ↔ ( ( 𝑥 − 𝐷 ) ∈ ℕ0 ∧ ( 𝑥 − 𝐷 ) ≤ 𝑥 ) ) ) |
| 41 | 31 38 40 | mpbir2and | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑥 − 𝐷 ) ∈ ( 0 ... 𝑥 ) ) |
| 42 | 12 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → 𝑅 ∈ Ring ) |
| 43 | eqid | ⊢ ( coe1 ‘ 𝐴 ) = ( coe1 ‘ 𝐴 ) | |
| 44 | 43 8 3 2 | coe1f | ⊢ ( 𝐴 ∈ 𝐵 → ( coe1 ‘ 𝐴 ) : ℕ0 ⟶ 𝐾 ) |
| 45 | 11 44 | syl | ⊢ ( 𝜑 → ( coe1 ‘ 𝐴 ) : ℕ0 ⟶ 𝐾 ) |
| 46 | 45 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → ( coe1 ‘ 𝐴 ) : ℕ0 ⟶ 𝐾 ) |
| 47 | elfznn0 | ⊢ ( 𝑦 ∈ ( 0 ... 𝑥 ) → 𝑦 ∈ ℕ0 ) | |
| 48 | 47 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → 𝑦 ∈ ℕ0 ) |
| 49 | 46 48 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) ∈ 𝐾 ) |
| 50 | eqid | ⊢ ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) = ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) | |
| 51 | 50 8 3 2 | coe1f | ⊢ ( ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∈ 𝐵 → ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) : ℕ0 ⟶ 𝐾 ) |
| 52 | 16 51 | syl | ⊢ ( 𝜑 → ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) : ℕ0 ⟶ 𝐾 ) |
| 53 | 52 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) : ℕ0 ⟶ 𝐾 ) |
| 54 | fznn0sub | ⊢ ( 𝑦 ∈ ( 0 ... 𝑥 ) → ( 𝑥 − 𝑦 ) ∈ ℕ0 ) | |
| 55 | 54 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → ( 𝑥 − 𝑦 ) ∈ ℕ0 ) |
| 56 | 53 55 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ∈ 𝐾 ) |
| 57 | 2 10 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) ∈ 𝐾 ∧ ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ∈ 𝐾 ) → ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) ∈ 𝐾 ) |
| 58 | 42 49 56 57 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) ∈ 𝐾 ) |
| 59 | 58 | fmpttd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) ) : ( 0 ... 𝑥 ) ⟶ 𝐾 ) |
| 60 | 12 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { ( 𝑥 − 𝐷 ) } ) ) → 𝑅 ∈ Ring ) |
| 61 | 13 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { ( 𝑥 − 𝐷 ) } ) ) → 𝐶 ∈ 𝐾 ) |
| 62 | 14 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { ( 𝑥 − 𝐷 ) } ) ) → 𝐷 ∈ ℕ0 ) |
| 63 | eldifi | ⊢ ( 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { ( 𝑥 − 𝐷 ) } ) → 𝑦 ∈ ( 0 ... 𝑥 ) ) | |
| 64 | 63 54 | syl | ⊢ ( 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { ( 𝑥 − 𝐷 ) } ) → ( 𝑥 − 𝑦 ) ∈ ℕ0 ) |
| 65 | 64 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { ( 𝑥 − 𝐷 ) } ) ) → ( 𝑥 − 𝑦 ) ∈ ℕ0 ) |
| 66 | eldifsn | ⊢ ( 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { ( 𝑥 − 𝐷 ) } ) ↔ ( 𝑦 ∈ ( 0 ... 𝑥 ) ∧ 𝑦 ≠ ( 𝑥 − 𝐷 ) ) ) | |
| 67 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → 𝑥 ∈ ℕ0 ) | |
| 68 | 67 | nn0cnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → 𝑥 ∈ ℂ ) |
| 69 | 47 | nn0cnd | ⊢ ( 𝑦 ∈ ( 0 ... 𝑥 ) → 𝑦 ∈ ℂ ) |
| 70 | 69 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → 𝑦 ∈ ℂ ) |
| 71 | 68 70 | nncand | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → ( 𝑥 − ( 𝑥 − 𝑦 ) ) = 𝑦 ) |
| 72 | 71 | eqcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → 𝑦 = ( 𝑥 − ( 𝑥 − 𝑦 ) ) ) |
| 73 | oveq2 | ⊢ ( 𝐷 = ( 𝑥 − 𝑦 ) → ( 𝑥 − 𝐷 ) = ( 𝑥 − ( 𝑥 − 𝑦 ) ) ) | |
| 74 | 73 | eqeq2d | ⊢ ( 𝐷 = ( 𝑥 − 𝑦 ) → ( 𝑦 = ( 𝑥 − 𝐷 ) ↔ 𝑦 = ( 𝑥 − ( 𝑥 − 𝑦 ) ) ) ) |
| 75 | 72 74 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → ( 𝐷 = ( 𝑥 − 𝑦 ) → 𝑦 = ( 𝑥 − 𝐷 ) ) ) |
| 76 | 75 | necon3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → ( 𝑦 ≠ ( 𝑥 − 𝐷 ) → 𝐷 ≠ ( 𝑥 − 𝑦 ) ) ) |
| 77 | 76 | impr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ ( 𝑦 ∈ ( 0 ... 𝑥 ) ∧ 𝑦 ≠ ( 𝑥 − 𝐷 ) ) ) → 𝐷 ≠ ( 𝑥 − 𝑦 ) ) |
| 78 | 66 77 | sylan2b | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { ( 𝑥 − 𝐷 ) } ) ) → 𝐷 ≠ ( 𝑥 − 𝑦 ) ) |
| 79 | 1 2 3 4 5 6 7 60 61 62 65 78 | coe1tmfv2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { ( 𝑥 − 𝐷 ) } ) ) → ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) = 0 ) |
| 80 | 79 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { ( 𝑥 − 𝐷 ) } ) ) → ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) = ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × 0 ) ) |
| 81 | 2 10 1 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) ∈ 𝐾 ) → ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × 0 ) = 0 ) |
| 82 | 42 49 81 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × 0 ) = 0 ) |
| 83 | 63 82 | sylan2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { ( 𝑥 − 𝐷 ) } ) ) → ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × 0 ) = 0 ) |
| 84 | 80 83 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { ( 𝑥 − 𝐷 ) } ) ) → ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) = 0 ) |
| 85 | 84 25 | suppss2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → ( ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) ) supp 0 ) ⊆ { ( 𝑥 − 𝐷 ) } ) |
| 86 | 2 1 23 25 41 59 85 | gsumpt | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) = ( ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ‘ ( 𝑥 − 𝐷 ) ) ) |
| 87 | fveq2 | ⊢ ( 𝑦 = ( 𝑥 − 𝐷 ) → ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) = ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) | |
| 88 | oveq2 | ⊢ ( 𝑦 = ( 𝑥 − 𝐷 ) → ( 𝑥 − 𝑦 ) = ( 𝑥 − ( 𝑥 − 𝐷 ) ) ) | |
| 89 | 88 | fveq2d | ⊢ ( 𝑦 = ( 𝑥 − 𝐷 ) → ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) = ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − ( 𝑥 − 𝐷 ) ) ) ) |
| 90 | 87 89 | oveq12d | ⊢ ( 𝑦 = ( 𝑥 − 𝐷 ) → ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) = ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − ( 𝑥 − 𝐷 ) ) ) ) ) |
| 91 | eqid | ⊢ ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) ) | |
| 92 | ovex | ⊢ ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − ( 𝑥 − 𝐷 ) ) ) ) ∈ V | |
| 93 | 90 91 92 | fvmpt | ⊢ ( ( 𝑥 − 𝐷 ) ∈ ( 0 ... 𝑥 ) → ( ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ‘ ( 𝑥 − 𝐷 ) ) = ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − ( 𝑥 − 𝐷 ) ) ) ) ) |
| 94 | 41 93 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → ( ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ‘ ( 𝑥 − 𝐷 ) ) = ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − ( 𝑥 − 𝐷 ) ) ) ) ) |
| 95 | 28 | nn0cnd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → 𝑥 ∈ ℂ ) |
| 96 | 27 | nn0cnd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → 𝐷 ∈ ℂ ) |
| 97 | 95 96 | nncand | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑥 − ( 𝑥 − 𝐷 ) ) = 𝐷 ) |
| 98 | 97 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − ( 𝑥 − 𝐷 ) ) ) = ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝐷 ) ) |
| 99 | 13 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → 𝐶 ∈ 𝐾 ) |
| 100 | 1 2 3 4 5 6 7 | coe1tmfv1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝐷 ) = 𝐶 ) |
| 101 | 21 99 27 100 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝐷 ) = 𝐶 ) |
| 102 | 98 101 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − ( 𝑥 − 𝐷 ) ) ) = 𝐶 ) |
| 103 | 102 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − ( 𝑥 − 𝐷 ) ) ) ) = ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) × 𝐶 ) ) |
| 104 | 86 94 103 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) → ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) = ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) × 𝐶 ) ) |
| 105 | 104 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) = ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) × 𝐶 ) ) |
| 106 | 12 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ( ¬ 𝐷 ≤ 𝑥 ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) ) → 𝑅 ∈ Ring ) |
| 107 | 13 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ( ¬ 𝐷 ≤ 𝑥 ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) ) → 𝐶 ∈ 𝐾 ) |
| 108 | 14 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ( ¬ 𝐷 ≤ 𝑥 ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) ) → 𝐷 ∈ ℕ0 ) |
| 109 | 54 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ( ¬ 𝐷 ≤ 𝑥 ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) ) → ( 𝑥 − 𝑦 ) ∈ ℕ0 ) |
| 110 | 54 | nn0red | ⊢ ( 𝑦 ∈ ( 0 ... 𝑥 ) → ( 𝑥 − 𝑦 ) ∈ ℝ ) |
| 111 | 110 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ( ¬ 𝐷 ≤ 𝑥 ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) ) → ( 𝑥 − 𝑦 ) ∈ ℝ ) |
| 112 | 33 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ( ¬ 𝐷 ≤ 𝑥 ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) ) → 𝑥 ∈ ℝ ) |
| 113 | 35 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ( ¬ 𝐷 ≤ 𝑥 ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) ) → 𝐷 ∈ ℝ ) |
| 114 | 47 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ( ¬ 𝐷 ≤ 𝑥 ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) ) → 𝑦 ∈ ℕ0 ) |
| 115 | 114 | nn0ge0d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ( ¬ 𝐷 ≤ 𝑥 ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) ) → 0 ≤ 𝑦 ) |
| 116 | 47 | nn0red | ⊢ ( 𝑦 ∈ ( 0 ... 𝑥 ) → 𝑦 ∈ ℝ ) |
| 117 | 116 | ad2antll | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ( ¬ 𝐷 ≤ 𝑥 ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) ) → 𝑦 ∈ ℝ ) |
| 118 | 112 117 | subge02d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ( ¬ 𝐷 ≤ 𝑥 ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) ) → ( 0 ≤ 𝑦 ↔ ( 𝑥 − 𝑦 ) ≤ 𝑥 ) ) |
| 119 | 115 118 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ( ¬ 𝐷 ≤ 𝑥 ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) ) → ( 𝑥 − 𝑦 ) ≤ 𝑥 ) |
| 120 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ( ¬ 𝐷 ≤ 𝑥 ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) ) → ¬ 𝐷 ≤ 𝑥 ) | |
| 121 | 112 113 | ltnled | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ( ¬ 𝐷 ≤ 𝑥 ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) ) → ( 𝑥 < 𝐷 ↔ ¬ 𝐷 ≤ 𝑥 ) ) |
| 122 | 120 121 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ( ¬ 𝐷 ≤ 𝑥 ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) ) → 𝑥 < 𝐷 ) |
| 123 | 111 112 113 119 122 | lelttrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ( ¬ 𝐷 ≤ 𝑥 ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) ) → ( 𝑥 − 𝑦 ) < 𝐷 ) |
| 124 | 111 123 | gtned | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ( ¬ 𝐷 ≤ 𝑥 ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) ) → 𝐷 ≠ ( 𝑥 − 𝑦 ) ) |
| 125 | 1 2 3 4 5 6 7 106 107 108 109 124 | coe1tmfv2 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ( ¬ 𝐷 ≤ 𝑥 ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) ) → ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) = 0 ) |
| 126 | 125 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ( ¬ 𝐷 ≤ 𝑥 ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) ) → ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) = ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × 0 ) ) |
| 127 | 45 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ( ¬ 𝐷 ≤ 𝑥 ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) ) → ( coe1 ‘ 𝐴 ) : ℕ0 ⟶ 𝐾 ) |
| 128 | 127 114 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ( ¬ 𝐷 ≤ 𝑥 ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) ) → ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) ∈ 𝐾 ) |
| 129 | 106 128 81 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ( ¬ 𝐷 ≤ 𝑥 ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) ) → ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × 0 ) = 0 ) |
| 130 | 126 129 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ( ¬ 𝐷 ≤ 𝑥 ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) ) → ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) = 0 ) |
| 131 | 130 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ¬ 𝐷 ≤ 𝑥 ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) = 0 ) |
| 132 | 131 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ¬ 𝐷 ≤ 𝑥 ) → ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ 0 ) ) |
| 133 | 132 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ¬ 𝐷 ≤ 𝑥 ) → ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) = ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ 0 ) ) ) |
| 134 | 12 22 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 135 | 1 | gsumz | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( 0 ... 𝑥 ) ∈ V ) → ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ 0 ) ) = 0 ) |
| 136 | 134 24 135 | sylancl | ⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ 0 ) ) = 0 ) |
| 137 | 136 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ¬ 𝐷 ≤ 𝑥 ) → ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ 0 ) ) = 0 ) |
| 138 | 133 137 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ¬ 𝐷 ≤ 𝑥 ) → ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) = 0 ) |
| 139 | 19 20 105 138 | ifbothda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) = if ( 𝐷 ≤ 𝑥 , ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) × 𝐶 ) , 0 ) ) |
| 140 | 139 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ 𝐴 ) ‘ 𝑦 ) × ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝐷 ≤ 𝑥 , ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) × 𝐶 ) , 0 ) ) ) |
| 141 | 18 140 | eqtrd | ⊢ ( 𝜑 → ( coe1 ‘ ( 𝐴 ∙ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝐷 ≤ 𝑥 , ( ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) × 𝐶 ) , 0 ) ) ) |