This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonzero coefficient of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1tm.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| coe1tm.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| coe1tm.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| coe1tm.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | ||
| coe1tm.m | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | ||
| coe1tm.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) | ||
| coe1tm.e | ⊢ ↑ = ( .g ‘ 𝑁 ) | ||
| Assertion | coe1tmfv1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝐷 ) = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1tm.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 2 | coe1tm.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 3 | coe1tm.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 4 | coe1tm.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 5 | coe1tm.m | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | |
| 6 | coe1tm.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) | |
| 7 | coe1tm.e | ⊢ ↑ = ( .g ‘ 𝑁 ) | |
| 8 | 1 2 3 4 5 6 7 | coe1tm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) ) |
| 9 | 8 | fveq1d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝐷 ) = ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) ‘ 𝐷 ) ) |
| 10 | eqid | ⊢ ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) | |
| 11 | iftrue | ⊢ ( 𝑥 = 𝐷 → if ( 𝑥 = 𝐷 , 𝐶 , 0 ) = 𝐶 ) | |
| 12 | simp3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 𝐷 ∈ ℕ0 ) | |
| 13 | simp2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → 𝐶 ∈ 𝐾 ) | |
| 14 | 10 11 12 13 | fvmptd3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) ‘ 𝐷 ) = 𝐶 ) |
| 15 | 9 14 | eqtrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝐷 ) = 𝐶 ) |