This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Coefficient vector of a polynomial multiplied on the left by a term. (Contributed by Stefan O'Rear, 29-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1tm.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| coe1tm.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| coe1tm.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| coe1tm.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | ||
| coe1tm.m | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | ||
| coe1tm.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) | ||
| coe1tm.e | ⊢ ↑ = ( .g ‘ 𝑁 ) | ||
| coe1tmmul.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| coe1tmmul.t | ⊢ ∙ = ( .r ‘ 𝑃 ) | ||
| coe1tmmul.u | ⊢ × = ( .r ‘ 𝑅 ) | ||
| coe1tmmul.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | ||
| coe1tmmul.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| coe1tmmul.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) | ||
| coe1tmmul.d | ⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) | ||
| Assertion | coe1tmmul | ⊢ ( 𝜑 → ( coe1 ‘ ( ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∙ 𝐴 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝐷 ≤ 𝑥 , ( 𝐶 × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) , 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1tm.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 2 | coe1tm.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 3 | coe1tm.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 4 | coe1tm.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 5 | coe1tm.m | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | |
| 6 | coe1tm.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) | |
| 7 | coe1tm.e | ⊢ ↑ = ( .g ‘ 𝑁 ) | |
| 8 | coe1tmmul.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 9 | coe1tmmul.t | ⊢ ∙ = ( .r ‘ 𝑃 ) | |
| 10 | coe1tmmul.u | ⊢ × = ( .r ‘ 𝑅 ) | |
| 11 | coe1tmmul.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| 12 | coe1tmmul.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 13 | coe1tmmul.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) | |
| 14 | coe1tmmul.d | ⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) | |
| 15 | 2 3 4 5 6 7 8 | ply1tmcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 16 | 12 13 14 15 | syl3anc | ⊢ ( 𝜑 → ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 17 | 3 9 10 8 | coe1mul | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( coe1 ‘ ( ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∙ 𝐴 ) ) = ( 𝑥 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) ) ) |
| 18 | 12 16 11 17 | syl3anc | ⊢ ( 𝜑 → ( coe1 ‘ ( ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∙ 𝐴 ) ) = ( 𝑥 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) ) ) |
| 19 | eqeq2 | ⊢ ( ( 𝐶 × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) = if ( 𝐷 ≤ 𝑥 , ( 𝐶 × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) , 0 ) → ( ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) = ( 𝐶 × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) ↔ ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) = if ( 𝐷 ≤ 𝑥 , ( 𝐶 × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) , 0 ) ) ) | |
| 20 | eqeq2 | ⊢ ( 0 = if ( 𝐷 ≤ 𝑥 , ( 𝐶 × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) , 0 ) → ( ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) = 0 ↔ ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) = if ( 𝐷 ≤ 𝑥 , ( 𝐶 × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) , 0 ) ) ) | |
| 21 | 12 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → 𝑅 ∈ Ring ) |
| 22 | ringmnd | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) | |
| 23 | 21 22 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → 𝑅 ∈ Mnd ) |
| 24 | ovexd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → ( 0 ... 𝑥 ) ∈ V ) | |
| 25 | 14 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → 𝐷 ∈ ℕ0 ) |
| 26 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → 𝐷 ≤ 𝑥 ) | |
| 27 | fznn0 | ⊢ ( 𝑥 ∈ ℕ0 → ( 𝐷 ∈ ( 0 ... 𝑥 ) ↔ ( 𝐷 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ) | |
| 28 | 27 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → ( 𝐷 ∈ ( 0 ... 𝑥 ) ↔ ( 𝐷 ∈ ℕ0 ∧ 𝐷 ≤ 𝑥 ) ) ) |
| 29 | 25 26 28 | mpbir2and | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → 𝐷 ∈ ( 0 ... 𝑥 ) ) |
| 30 | 12 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → 𝑅 ∈ Ring ) |
| 31 | eqid | ⊢ ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) = ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) | |
| 32 | 31 8 3 2 | coe1f | ⊢ ( ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∈ 𝐵 → ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) : ℕ0 ⟶ 𝐾 ) |
| 33 | 16 32 | syl | ⊢ ( 𝜑 → ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) : ℕ0 ⟶ 𝐾 ) |
| 34 | 33 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) : ℕ0 ⟶ 𝐾 ) |
| 35 | elfznn0 | ⊢ ( 𝑦 ∈ ( 0 ... 𝑥 ) → 𝑦 ∈ ℕ0 ) | |
| 36 | ffvelcdm | ⊢ ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) : ℕ0 ⟶ 𝐾 ∧ 𝑦 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) ∈ 𝐾 ) | |
| 37 | 34 35 36 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) ∈ 𝐾 ) |
| 38 | eqid | ⊢ ( coe1 ‘ 𝐴 ) = ( coe1 ‘ 𝐴 ) | |
| 39 | 38 8 3 2 | coe1f | ⊢ ( 𝐴 ∈ 𝐵 → ( coe1 ‘ 𝐴 ) : ℕ0 ⟶ 𝐾 ) |
| 40 | 11 39 | syl | ⊢ ( 𝜑 → ( coe1 ‘ 𝐴 ) : ℕ0 ⟶ 𝐾 ) |
| 41 | 40 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( coe1 ‘ 𝐴 ) : ℕ0 ⟶ 𝐾 ) |
| 42 | fznn0sub | ⊢ ( 𝑦 ∈ ( 0 ... 𝑥 ) → ( 𝑥 − 𝑦 ) ∈ ℕ0 ) | |
| 43 | ffvelcdm | ⊢ ( ( ( coe1 ‘ 𝐴 ) : ℕ0 ⟶ 𝐾 ∧ ( 𝑥 − 𝑦 ) ∈ ℕ0 ) → ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ∈ 𝐾 ) | |
| 44 | 41 42 43 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ∈ 𝐾 ) |
| 45 | 2 10 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) ∈ 𝐾 ∧ ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ∈ 𝐾 ) → ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ∈ 𝐾 ) |
| 46 | 30 37 44 45 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ∈ 𝐾 ) |
| 47 | 46 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ) : ( 0 ... 𝑥 ) ⟶ 𝐾 ) |
| 48 | 47 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ) : ( 0 ... 𝑥 ) ⟶ 𝐾 ) |
| 49 | 12 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) ∧ 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { 𝐷 } ) ) → 𝑅 ∈ Ring ) |
| 50 | 13 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) ∧ 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { 𝐷 } ) ) → 𝐶 ∈ 𝐾 ) |
| 51 | 14 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) ∧ 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { 𝐷 } ) ) → 𝐷 ∈ ℕ0 ) |
| 52 | eldifi | ⊢ ( 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { 𝐷 } ) → 𝑦 ∈ ( 0 ... 𝑥 ) ) | |
| 53 | 52 35 | syl | ⊢ ( 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { 𝐷 } ) → 𝑦 ∈ ℕ0 ) |
| 54 | 53 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) ∧ 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { 𝐷 } ) ) → 𝑦 ∈ ℕ0 ) |
| 55 | eldifsni | ⊢ ( 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { 𝐷 } ) → 𝑦 ≠ 𝐷 ) | |
| 56 | 55 | necomd | ⊢ ( 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { 𝐷 } ) → 𝐷 ≠ 𝑦 ) |
| 57 | 56 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) ∧ 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { 𝐷 } ) ) → 𝐷 ≠ 𝑦 ) |
| 58 | 1 2 3 4 5 6 7 49 50 51 54 57 | coe1tmfv2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) ∧ 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { 𝐷 } ) ) → ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) = 0 ) |
| 59 | 58 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) ∧ 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { 𝐷 } ) ) → ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) = ( 0 × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ) |
| 60 | 2 10 1 | ringlz | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ∈ 𝐾 ) → ( 0 × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) = 0 ) |
| 61 | 30 44 60 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → ( 0 × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) = 0 ) |
| 62 | 52 61 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { 𝐷 } ) ) → ( 0 × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) = 0 ) |
| 63 | 62 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) ∧ 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { 𝐷 } ) ) → ( 0 × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) = 0 ) |
| 64 | 59 63 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) ∧ 𝑦 ∈ ( ( 0 ... 𝑥 ) ∖ { 𝐷 } ) ) → ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) = 0 ) |
| 65 | 64 24 | suppss2 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → ( ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ) supp 0 ) ⊆ { 𝐷 } ) |
| 66 | 2 1 23 24 29 48 65 | gsumpt | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) = ( ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ‘ 𝐷 ) ) |
| 67 | fveq2 | ⊢ ( 𝑦 = 𝐷 → ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) = ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝐷 ) ) | |
| 68 | oveq2 | ⊢ ( 𝑦 = 𝐷 → ( 𝑥 − 𝑦 ) = ( 𝑥 − 𝐷 ) ) | |
| 69 | 68 | fveq2d | ⊢ ( 𝑦 = 𝐷 → ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) = ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) |
| 70 | 67 69 | oveq12d | ⊢ ( 𝑦 = 𝐷 → ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) = ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝐷 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) ) |
| 71 | eqid | ⊢ ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ) | |
| 72 | ovex | ⊢ ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝐷 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) ∈ V | |
| 73 | 70 71 72 | fvmpt | ⊢ ( 𝐷 ∈ ( 0 ... 𝑥 ) → ( ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ‘ 𝐷 ) = ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝐷 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) ) |
| 74 | 29 73 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → ( ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ‘ 𝐷 ) = ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝐷 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) ) |
| 75 | 1 2 3 4 5 6 7 | coe1tmfv1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝐷 ) = 𝐶 ) |
| 76 | 12 13 14 75 | syl3anc | ⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝐷 ) = 𝐶 ) |
| 77 | 76 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝐷 ) = 𝐶 ) |
| 78 | 77 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝐷 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) = ( 𝐶 × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) ) |
| 79 | 74 78 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → ( ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ‘ 𝐷 ) = ( 𝐶 × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) ) |
| 80 | 66 79 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝐷 ≤ 𝑥 ) → ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) = ( 𝐶 × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) ) |
| 81 | 12 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ¬ 𝐷 ≤ 𝑥 ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → 𝑅 ∈ Ring ) |
| 82 | 13 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ¬ 𝐷 ≤ 𝑥 ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → 𝐶 ∈ 𝐾 ) |
| 83 | 14 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ¬ 𝐷 ≤ 𝑥 ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → 𝐷 ∈ ℕ0 ) |
| 84 | 35 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ¬ 𝐷 ≤ 𝑥 ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → 𝑦 ∈ ℕ0 ) |
| 85 | elfzle2 | ⊢ ( 𝑦 ∈ ( 0 ... 𝑥 ) → 𝑦 ≤ 𝑥 ) | |
| 86 | 85 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → 𝑦 ≤ 𝑥 ) |
| 87 | breq1 | ⊢ ( 𝐷 = 𝑦 → ( 𝐷 ≤ 𝑥 ↔ 𝑦 ≤ 𝑥 ) ) | |
| 88 | 86 87 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → ( 𝐷 = 𝑦 → 𝐷 ≤ 𝑥 ) ) |
| 89 | 88 | necon3bd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → ( ¬ 𝐷 ≤ 𝑥 → 𝐷 ≠ 𝑦 ) ) |
| 90 | 89 | imp | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) ∧ ¬ 𝐷 ≤ 𝑥 ) → 𝐷 ≠ 𝑦 ) |
| 91 | 90 | an32s | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ¬ 𝐷 ≤ 𝑥 ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → 𝐷 ≠ 𝑦 ) |
| 92 | 1 2 3 4 5 6 7 81 82 83 84 91 | coe1tmfv2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ¬ 𝐷 ≤ 𝑥 ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) = 0 ) |
| 93 | 92 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ¬ 𝐷 ≤ 𝑥 ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) = ( 0 × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ) |
| 94 | 61 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ¬ 𝐷 ≤ 𝑥 ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → ( 0 × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) = 0 ) |
| 95 | 93 94 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ¬ 𝐷 ≤ 𝑥 ) ∧ 𝑦 ∈ ( 0 ... 𝑥 ) ) → ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) = 0 ) |
| 96 | 95 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ¬ 𝐷 ≤ 𝑥 ) → ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ) = ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ 0 ) ) |
| 97 | 96 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ¬ 𝐷 ≤ 𝑥 ) → ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) = ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ 0 ) ) ) |
| 98 | 12 22 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 99 | 98 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ¬ 𝐷 ≤ 𝑥 ) → 𝑅 ∈ Mnd ) |
| 100 | ovexd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ¬ 𝐷 ≤ 𝑥 ) → ( 0 ... 𝑥 ) ∈ V ) | |
| 101 | 1 | gsumz | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( 0 ... 𝑥 ) ∈ V ) → ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ 0 ) ) = 0 ) |
| 102 | 99 100 101 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ¬ 𝐷 ≤ 𝑥 ) → ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ 0 ) ) = 0 ) |
| 103 | 97 102 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ ¬ 𝐷 ≤ 𝑥 ) → ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) = 0 ) |
| 104 | 19 20 80 103 | ifbothda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) = if ( 𝐷 ≤ 𝑥 , ( 𝐶 × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) , 0 ) ) |
| 105 | 104 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑦 ∈ ( 0 ... 𝑥 ) ↦ ( ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝑦 ) × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝑦 ) ) ) ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝐷 ≤ 𝑥 , ( 𝐶 × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) , 0 ) ) ) |
| 106 | 18 105 | eqtrd | ⊢ ( 𝜑 → ( coe1 ‘ ( ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ∙ 𝐴 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝐷 ≤ 𝑥 , ( 𝐶 × ( ( coe1 ‘ 𝐴 ) ‘ ( 𝑥 − 𝐷 ) ) ) , 0 ) ) ) |