This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterization of a finite set of sequential nonnegative integers. (Contributed by NM, 1-Aug-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fznn0 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐾 ∈ ( 0 ... 𝑁 ) ↔ ( 𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z | ⊢ 0 ∈ ℤ | |
| 2 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 3 | elfz1 | ⊢ ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∈ ( 0 ... 𝑁 ) ↔ ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) | |
| 4 | 1 2 3 | sylancr | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐾 ∈ ( 0 ... 𝑁 ) ↔ ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 5 | df-3an | ⊢ ( ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ↔ ( ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ) ∧ 𝐾 ≤ 𝑁 ) ) | |
| 6 | elnn0z | ⊢ ( 𝐾 ∈ ℕ0 ↔ ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ) ) | |
| 7 | 6 | anbi1i | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) ↔ ( ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ) ∧ 𝐾 ≤ 𝑁 ) ) |
| 8 | 5 7 | bitr4i | ⊢ ( ( 𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ↔ ( 𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) ) |
| 9 | 4 8 | bitrdi | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐾 ∈ ( 0 ... 𝑁 ) ↔ ( 𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁 ) ) ) |