This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zero coefficient of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1tm.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| coe1tm.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| coe1tm.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| coe1tm.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | ||
| coe1tm.m | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | ||
| coe1tm.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) | ||
| coe1tm.e | ⊢ ↑ = ( .g ‘ 𝑁 ) | ||
| coe1tmfv2.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| coe1tmfv2.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) | ||
| coe1tmfv2.d | ⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) | ||
| coe1tmfv2.f | ⊢ ( 𝜑 → 𝐹 ∈ ℕ0 ) | ||
| coe1tmfv2.q | ⊢ ( 𝜑 → 𝐷 ≠ 𝐹 ) | ||
| Assertion | coe1tmfv2 | ⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝐹 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1tm.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 2 | coe1tm.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 3 | coe1tm.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 4 | coe1tm.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 5 | coe1tm.m | ⊢ · = ( ·𝑠 ‘ 𝑃 ) | |
| 6 | coe1tm.n | ⊢ 𝑁 = ( mulGrp ‘ 𝑃 ) | |
| 7 | coe1tm.e | ⊢ ↑ = ( .g ‘ 𝑁 ) | |
| 8 | coe1tmfv2.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 9 | coe1tmfv2.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) | |
| 10 | coe1tmfv2.d | ⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) | |
| 11 | coe1tmfv2.f | ⊢ ( 𝜑 → 𝐹 ∈ ℕ0 ) | |
| 12 | coe1tmfv2.q | ⊢ ( 𝜑 → 𝐷 ≠ 𝐹 ) | |
| 13 | 1 2 3 4 5 6 7 | coe1tm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐷 ∈ ℕ0 ) → ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) ) |
| 14 | 8 9 10 13 | syl3anc | ⊢ ( 𝜑 → ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) ) |
| 15 | 14 | fveq1d | ⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝐹 ) = ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) ‘ 𝐹 ) ) |
| 16 | eqid | ⊢ ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) = ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) | |
| 17 | eqeq1 | ⊢ ( 𝑥 = 𝐹 → ( 𝑥 = 𝐷 ↔ 𝐹 = 𝐷 ) ) | |
| 18 | 17 | ifbid | ⊢ ( 𝑥 = 𝐹 → if ( 𝑥 = 𝐷 , 𝐶 , 0 ) = if ( 𝐹 = 𝐷 , 𝐶 , 0 ) ) |
| 19 | 2 1 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐾 ) |
| 20 | 8 19 | syl | ⊢ ( 𝜑 → 0 ∈ 𝐾 ) |
| 21 | 9 20 | ifcld | ⊢ ( 𝜑 → if ( 𝐹 = 𝐷 , 𝐶 , 0 ) ∈ 𝐾 ) |
| 22 | 16 18 11 21 | fvmptd3 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℕ0 ↦ if ( 𝑥 = 𝐷 , 𝐶 , 0 ) ) ‘ 𝐹 ) = if ( 𝐹 = 𝐷 , 𝐶 , 0 ) ) |
| 23 | 12 | necomd | ⊢ ( 𝜑 → 𝐹 ≠ 𝐷 ) |
| 24 | 23 | neneqd | ⊢ ( 𝜑 → ¬ 𝐹 = 𝐷 ) |
| 25 | 24 | iffalsed | ⊢ ( 𝜑 → if ( 𝐹 = 𝐷 , 𝐶 , 0 ) = 0 ) |
| 26 | 15 22 25 | 3eqtrd | ⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝐶 · ( 𝐷 ↑ 𝑋 ) ) ) ‘ 𝐹 ) = 0 ) |