This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgroup is a symmetric submonoid. (Contributed by Mario Carneiro, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | issubg3.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| Assertion | issubg3 | ⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubg3.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 3 | 2 | subg0cl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 4 | 3 | a1i | ⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ) |
| 5 | 2 | subm0cl | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 7 | 6 | a1i | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ) |
| 8 | ne0i | ⊢ ( ( 0g ‘ 𝐺 ) ∈ 𝑆 → 𝑆 ≠ ∅ ) | |
| 9 | id | ⊢ ( ( 0g ‘ 𝐺 ) ∈ 𝑆 → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) | |
| 10 | 8 9 | 2thd | ⊢ ( ( 0g ‘ 𝐺 ) ∈ 𝑆 → ( 𝑆 ≠ ∅ ↔ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) → ( 𝑆 ≠ ∅ ↔ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ) |
| 12 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ↔ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) | |
| 13 | 12 | a1i | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ↔ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) |
| 14 | 11 13 | 3anbi23d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) → ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ) |
| 15 | anass | ⊢ ( ( ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ↔ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ∧ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) | |
| 16 | df-3an | ⊢ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ↔ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ) | |
| 17 | 16 | anbi1i | ⊢ ( ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ↔ ( ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) |
| 18 | df-3an | ⊢ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ↔ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) ∧ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) | |
| 19 | 15 17 18 | 3bitr4ri | ⊢ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ↔ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) |
| 20 | 14 19 | bitrdi | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) → ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ↔ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) |
| 21 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 22 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 23 | 21 22 1 | issubg2 | ⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ∧ ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ) |
| 25 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 26 | 21 2 22 | issubm | ⊢ ( 𝐺 ∈ Mnd → ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ) ) |
| 27 | 25 26 | syl | ⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ) ) |
| 28 | 27 | anbi1d | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ↔ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) |
| 29 | 28 | adantr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) → ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ↔ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) |
| 30 | 20 24 29 | 3bitr4d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 0g ‘ 𝐺 ) ∈ 𝑆 ) → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) |
| 31 | 30 | ex | ⊢ ( 𝐺 ∈ Grp → ( ( 0g ‘ 𝐺 ) ∈ 𝑆 → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) ) |
| 32 | 4 7 31 | pm5.21ndd | ⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝐼 ‘ 𝑥 ) ∈ 𝑆 ) ) ) |