This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition for continuity at a point in terms of neighborhoods. (Contributed by Jeff Hankins, 7-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnpnei.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| cnpnei.2 | ⊢ 𝑌 = ∪ 𝐾 | ||
| Assertion | cnpnei | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ↔ ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnpnei.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | cnpnei.2 | ⊢ 𝑌 = ∪ 𝐾 | |
| 3 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝑦 ) ⊆ dom 𝐹 | |
| 4 | fdm | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → dom 𝐹 = 𝑋 ) | |
| 5 | 3 4 | sseqtrid | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝑋 ) |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝑋 ) |
| 7 | 6 | ad2antrr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) → ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝑋 ) |
| 8 | neii2 | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) → ∃ 𝑔 ∈ 𝐾 ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) | |
| 9 | 8 | 3ad2antl2 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) → ∃ 𝑔 ∈ 𝐾 ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) |
| 10 | 9 | ad2ant2rl | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) → ∃ 𝑔 ∈ 𝐾 ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) |
| 11 | simpll | ⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) | |
| 12 | simprl | ⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) → 𝑔 ∈ 𝐾 ) | |
| 13 | fvex | ⊢ ( 𝐹 ‘ 𝐴 ) ∈ V | |
| 14 | 13 | snss | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑔 ↔ { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ) |
| 15 | 14 | biimpri | ⊢ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 → ( 𝐹 ‘ 𝐴 ) ∈ 𝑔 ) |
| 16 | 15 | adantr | ⊢ ( ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑔 ) |
| 17 | 16 | ad2antll | ⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) → ( 𝐹 ‘ 𝐴 ) ∈ 𝑔 ) |
| 18 | 11 12 17 | 3jca | ⊢ ( ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑔 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑔 ) ) |
| 19 | 18 | adantll | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑔 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑔 ) ) |
| 20 | cnpimaex | ⊢ ( ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑔 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑔 ) → ∃ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ∧ ( 𝐹 “ 𝑜 ) ⊆ 𝑔 ) ) | |
| 21 | 19 20 | syl | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) → ∃ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ∧ ( 𝐹 “ 𝑜 ) ⊆ 𝑔 ) ) |
| 22 | sstr2 | ⊢ ( ( 𝐹 “ 𝑜 ) ⊆ 𝑔 → ( 𝑔 ⊆ 𝑦 → ( 𝐹 “ 𝑜 ) ⊆ 𝑦 ) ) | |
| 23 | 22 | com12 | ⊢ ( 𝑔 ⊆ 𝑦 → ( ( 𝐹 “ 𝑜 ) ⊆ 𝑔 → ( 𝐹 “ 𝑜 ) ⊆ 𝑦 ) ) |
| 24 | 23 | ad2antll | ⊢ ( ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) → ( ( 𝐹 “ 𝑜 ) ⊆ 𝑔 → ( 𝐹 “ 𝑜 ) ⊆ 𝑦 ) ) |
| 25 | 24 | ad2antlr | ⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) ∧ 𝑜 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑜 ) ⊆ 𝑔 → ( 𝐹 “ 𝑜 ) ⊆ 𝑦 ) ) |
| 26 | ffun | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → Fun 𝐹 ) | |
| 27 | 26 | 3ad2ant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → Fun 𝐹 ) |
| 28 | 27 | ad2antrr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) → Fun 𝐹 ) |
| 29 | 28 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) ∧ 𝑜 ∈ 𝐽 ) → Fun 𝐹 ) |
| 30 | 1 | eltopss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑜 ∈ 𝐽 ) → 𝑜 ⊆ 𝑋 ) |
| 31 | 30 | adantlr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑜 ∈ 𝐽 ) → 𝑜 ⊆ 𝑋 ) |
| 32 | 4 | sseq2d | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( 𝑜 ⊆ dom 𝐹 ↔ 𝑜 ⊆ 𝑋 ) ) |
| 33 | 32 | ad2antlr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑜 ∈ 𝐽 ) → ( 𝑜 ⊆ dom 𝐹 ↔ 𝑜 ⊆ 𝑋 ) ) |
| 34 | 31 33 | mpbird | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑜 ∈ 𝐽 ) → 𝑜 ⊆ dom 𝐹 ) |
| 35 | 34 | 3adantl2 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑜 ∈ 𝐽 ) → 𝑜 ⊆ dom 𝐹 ) |
| 36 | 35 | adantlr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑜 ∈ 𝐽 ) → 𝑜 ⊆ dom 𝐹 ) |
| 37 | 36 | ad4ant14 | ⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) ∧ 𝑜 ∈ 𝐽 ) → 𝑜 ⊆ dom 𝐹 ) |
| 38 | funimass3 | ⊢ ( ( Fun 𝐹 ∧ 𝑜 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝑜 ) ⊆ 𝑦 ↔ 𝑜 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) | |
| 39 | 29 37 38 | syl2anc | ⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) ∧ 𝑜 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑜 ) ⊆ 𝑦 ↔ 𝑜 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 40 | 25 39 | sylibd | ⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) ∧ 𝑜 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑜 ) ⊆ 𝑔 → 𝑜 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 41 | 40 | anim2d | ⊢ ( ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) ∧ 𝑜 ∈ 𝐽 ) → ( ( 𝐴 ∈ 𝑜 ∧ ( 𝐹 “ 𝑜 ) ⊆ 𝑔 ) → ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
| 42 | 41 | reximdva | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) → ( ∃ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ∧ ( 𝐹 “ 𝑜 ) ⊆ 𝑔 ) → ∃ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
| 43 | 21 42 | mpd | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) ∧ ( 𝑔 ∈ 𝐾 ∧ ( { ( 𝐹 ‘ 𝐴 ) } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦 ) ) ) → ∃ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 44 | 10 43 | rexlimddv | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) → ∃ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 45 | 1 | isneip | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ↔ ( ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝑋 ∧ ∃ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) |
| 46 | 45 | 3ad2antl1 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ↔ ( ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝑋 ∧ ∃ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) |
| 47 | 46 | adantr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) → ( ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ↔ ( ( ◡ 𝐹 “ 𝑦 ) ⊆ 𝑋 ∧ ∃ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ∧ 𝑜 ⊆ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) |
| 48 | 7 44 47 | mpbir2and | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) ) → ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 49 | 48 | exp32 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) → ( 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) → ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) ) |
| 50 | 49 | ralrimdv | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) → ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |
| 51 | simpll3 | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 52 | opnneip | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑜 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ) → 𝑜 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ) | |
| 53 | imaeq2 | ⊢ ( 𝑦 = 𝑜 → ( ◡ 𝐹 “ 𝑦 ) = ( ◡ 𝐹 “ 𝑜 ) ) | |
| 54 | 53 | eleq1d | ⊢ ( 𝑦 = 𝑜 → ( ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ↔ ( ◡ 𝐹 “ 𝑜 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |
| 55 | 54 | rspcv | ⊢ ( 𝑜 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( ◡ 𝐹 “ 𝑜 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |
| 56 | 52 55 | syl | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑜 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( ◡ 𝐹 “ 𝑜 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |
| 57 | 56 | 3com23 | ⊢ ( ( 𝐾 ∈ Top ∧ ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( ◡ 𝐹 “ 𝑜 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |
| 58 | 57 | 3expb | ⊢ ( ( 𝐾 ∈ Top ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( ◡ 𝐹 “ 𝑜 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |
| 59 | 58 | 3ad2antl2 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( ◡ 𝐹 “ 𝑜 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |
| 60 | 59 | adantlr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( ◡ 𝐹 “ 𝑜 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |
| 61 | neii2 | ⊢ ( ( 𝐽 ∈ Top ∧ ( ◡ 𝐹 “ 𝑜 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ∃ 𝑔 ∈ 𝐽 ( { 𝐴 } ⊆ 𝑔 ∧ 𝑔 ⊆ ( ◡ 𝐹 “ 𝑜 ) ) ) | |
| 62 | 61 | ex | ⊢ ( 𝐽 ∈ Top → ( ( ◡ 𝐹 “ 𝑜 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ∃ 𝑔 ∈ 𝐽 ( { 𝐴 } ⊆ 𝑔 ∧ 𝑔 ⊆ ( ◡ 𝐹 “ 𝑜 ) ) ) ) |
| 63 | 62 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ( ◡ 𝐹 “ 𝑜 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ∃ 𝑔 ∈ 𝐽 ( { 𝐴 } ⊆ 𝑔 ∧ 𝑔 ⊆ ( ◡ 𝐹 “ 𝑜 ) ) ) ) |
| 64 | 63 | ad2antrr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) ) → ( ( ◡ 𝐹 “ 𝑜 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ∃ 𝑔 ∈ 𝐽 ( { 𝐴 } ⊆ 𝑔 ∧ 𝑔 ⊆ ( ◡ 𝐹 “ 𝑜 ) ) ) ) |
| 65 | snssg | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ 𝑔 ↔ { 𝐴 } ⊆ 𝑔 ) ) | |
| 66 | 65 | ad3antlr | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) ) ∧ 𝑔 ∈ 𝐽 ) → ( 𝐴 ∈ 𝑔 ↔ { 𝐴 } ⊆ 𝑔 ) ) |
| 67 | 27 | ad3antrrr | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) ) ∧ 𝑔 ∈ 𝐽 ) → Fun 𝐹 ) |
| 68 | 1 | eltopss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑔 ∈ 𝐽 ) → 𝑔 ⊆ 𝑋 ) |
| 69 | 68 | 3ad2antl1 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑔 ∈ 𝐽 ) → 𝑔 ⊆ 𝑋 ) |
| 70 | 4 | sseq2d | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( 𝑔 ⊆ dom 𝐹 ↔ 𝑔 ⊆ 𝑋 ) ) |
| 71 | 70 | 3ad2ant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( 𝑔 ⊆ dom 𝐹 ↔ 𝑔 ⊆ 𝑋 ) ) |
| 72 | 71 | biimpar | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑔 ⊆ 𝑋 ) → 𝑔 ⊆ dom 𝐹 ) |
| 73 | 69 72 | syldan | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑔 ∈ 𝐽 ) → 𝑔 ⊆ dom 𝐹 ) |
| 74 | 73 | ad4ant14 | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) ) ∧ 𝑔 ∈ 𝐽 ) → 𝑔 ⊆ dom 𝐹 ) |
| 75 | funimass3 | ⊢ ( ( Fun 𝐹 ∧ 𝑔 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ↔ 𝑔 ⊆ ( ◡ 𝐹 “ 𝑜 ) ) ) | |
| 76 | 67 74 75 | syl2anc | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) ) ∧ 𝑔 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ↔ 𝑔 ⊆ ( ◡ 𝐹 “ 𝑜 ) ) ) |
| 77 | 66 76 | anbi12d | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) ) ∧ 𝑔 ∈ 𝐽 ) → ( ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ↔ ( { 𝐴 } ⊆ 𝑔 ∧ 𝑔 ⊆ ( ◡ 𝐹 “ 𝑜 ) ) ) ) |
| 78 | 77 | biimprd | ⊢ ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) ) ∧ 𝑔 ∈ 𝐽 ) → ( ( { 𝐴 } ⊆ 𝑔 ∧ 𝑔 ⊆ ( ◡ 𝐹 “ 𝑜 ) ) → ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ) ) |
| 79 | 78 | reximdva | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) ) → ( ∃ 𝑔 ∈ 𝐽 ( { 𝐴 } ⊆ 𝑔 ∧ 𝑔 ⊆ ( ◡ 𝐹 “ 𝑜 ) ) → ∃ 𝑔 ∈ 𝐽 ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ) ) |
| 80 | 60 64 79 | 3syld | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 ∧ 𝑜 ∈ 𝐾 ) ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ∃ 𝑔 ∈ 𝐽 ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ) ) |
| 81 | 80 | exp32 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 → ( 𝑜 ∈ 𝐾 → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ∃ 𝑔 ∈ 𝐽 ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ) ) ) ) |
| 82 | 81 | com24 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( 𝑜 ∈ 𝐾 → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 → ∃ 𝑔 ∈ 𝐽 ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ) ) ) ) |
| 83 | 82 | imp | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝑜 ∈ 𝐾 → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 → ∃ 𝑔 ∈ 𝐽 ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ) ) ) |
| 84 | 83 | ralrimiv | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ∀ 𝑜 ∈ 𝐾 ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 → ∃ 𝑔 ∈ 𝐽 ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ) ) |
| 85 | 1 2 | iscnp2 | ⊢ ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑜 ∈ 𝐾 ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 → ∃ 𝑔 ∈ 𝐽 ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ) ) ) ) |
| 86 | 85 | baib | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑜 ∈ 𝐾 ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 → ∃ 𝑔 ∈ 𝐽 ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ) ) ) ) |
| 87 | 86 | 3expa | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑜 ∈ 𝐾 ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 → ∃ 𝑔 ∈ 𝐽 ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ) ) ) ) |
| 88 | 87 | 3adantl3 | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑜 ∈ 𝐾 ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 → ∃ 𝑔 ∈ 𝐽 ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ) ) ) ) |
| 89 | 88 | adantr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑜 ∈ 𝐾 ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑜 → ∃ 𝑔 ∈ 𝐽 ( 𝐴 ∈ 𝑔 ∧ ( 𝐹 “ 𝑔 ) ⊆ 𝑜 ) ) ) ) ) |
| 90 | 51 84 89 | mpbir2and | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) ∧ ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) |
| 91 | 90 | ex | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ) ) |
| 92 | 50 91 | impbid | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐴 ) ↔ ∀ 𝑦 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝐴 ) } ) ( ◡ 𝐹 “ 𝑦 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) ) |