This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "the class N is a neighborhood of point P ". (Contributed by NM, 26-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | neifval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | isneip | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ↔ ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neifval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | snssi | ⊢ ( 𝑃 ∈ 𝑋 → { 𝑃 } ⊆ 𝑋 ) | |
| 3 | 1 | isnei | ⊢ ( ( 𝐽 ∈ Top ∧ { 𝑃 } ⊆ 𝑋 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ↔ ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( { 𝑃 } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) ) |
| 4 | 2 3 | sylan2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ↔ ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( { 𝑃 } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) ) |
| 5 | snssg | ⊢ ( 𝑃 ∈ 𝑋 → ( 𝑃 ∈ 𝑔 ↔ { 𝑃 } ⊆ 𝑔 ) ) | |
| 6 | 5 | anbi1d | ⊢ ( 𝑃 ∈ 𝑋 → ( ( 𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ↔ ( { 𝑃 } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) |
| 7 | 6 | rexbidv | ⊢ ( 𝑃 ∈ 𝑋 → ( ∃ 𝑔 ∈ 𝐽 ( 𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ↔ ∃ 𝑔 ∈ 𝐽 ( { 𝑃 } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) |
| 8 | 7 | anbi2d | ⊢ ( 𝑃 ∈ 𝑋 → ( ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ↔ ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( { 𝑃 } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ↔ ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( { 𝑃 } ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) ) |
| 10 | 4 9 | bitr4d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ↔ ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑃 ∈ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) ) |