This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cnlnadji . G is a continuous linear functional. (Contributed by NM, 16-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnlnadjlem.1 | ⊢ 𝑇 ∈ LinOp | |
| cnlnadjlem.2 | ⊢ 𝑇 ∈ ContOp | ||
| cnlnadjlem.3 | ⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ) | ||
| Assertion | cnlnadjlem2 | ⊢ ( 𝑦 ∈ ℋ → ( 𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlnadjlem.1 | ⊢ 𝑇 ∈ LinOp | |
| 2 | cnlnadjlem.2 | ⊢ 𝑇 ∈ ContOp | |
| 3 | cnlnadjlem.3 | ⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ) | |
| 4 | 1 | lnopfi | ⊢ 𝑇 : ℋ ⟶ ℋ |
| 5 | 4 | ffvelcdmi | ⊢ ( 𝑔 ∈ ℋ → ( 𝑇 ‘ 𝑔 ) ∈ ℋ ) |
| 6 | hicl | ⊢ ( ( ( 𝑇 ‘ 𝑔 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ∈ ℂ ) | |
| 7 | 5 6 | sylan | ⊢ ( ( 𝑔 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ∈ ℂ ) |
| 8 | 7 | ancoms | ⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑔 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ∈ ℂ ) |
| 9 | 8 3 | fmptd | ⊢ ( 𝑦 ∈ ℋ → 𝐺 : ℋ ⟶ ℂ ) |
| 10 | hvmulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑤 ) ∈ ℋ ) | |
| 11 | 1 | lnopaddi | ⊢ ( ( ( 𝑥 ·ℎ 𝑤 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) = ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
| 12 | 11 | 3adant3 | ⊢ ( ( ( 𝑥 ·ℎ 𝑤 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) = ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
| 13 | 12 | oveq1d | ⊢ ( ( ( 𝑥 ·ℎ 𝑤 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) ·ih 𝑦 ) = ( ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑦 ) ) |
| 14 | 4 | ffvelcdmi | ⊢ ( ( 𝑥 ·ℎ 𝑤 ) ∈ ℋ → ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) ∈ ℋ ) |
| 15 | 4 | ffvelcdmi | ⊢ ( 𝑧 ∈ ℋ → ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) |
| 16 | id | ⊢ ( 𝑦 ∈ ℋ → 𝑦 ∈ ℋ ) | |
| 17 | ax-his2 | ⊢ ( ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑧 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑦 ) = ( ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) ·ih 𝑦 ) + ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ) ) | |
| 18 | 14 15 16 17 | syl3an | ⊢ ( ( ( 𝑥 ·ℎ 𝑤 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ·ih 𝑦 ) = ( ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) ·ih 𝑦 ) + ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ) ) |
| 19 | 13 18 | eqtrd | ⊢ ( ( ( 𝑥 ·ℎ 𝑤 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) ·ih 𝑦 ) = ( ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) ·ih 𝑦 ) + ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ) ) |
| 20 | 19 | 3comr | ⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑥 ·ℎ 𝑤 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) ·ih 𝑦 ) = ( ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) ·ih 𝑦 ) + ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ) ) |
| 21 | 20 | 3expa | ⊢ ( ( ( 𝑦 ∈ ℋ ∧ ( 𝑥 ·ℎ 𝑤 ) ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) ·ih 𝑦 ) = ( ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) ·ih 𝑦 ) + ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ) ) |
| 22 | 10 21 | sylanl2 | ⊢ ( ( ( 𝑦 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) ·ih 𝑦 ) = ( ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) ·ih 𝑦 ) + ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ) ) |
| 23 | hvaddcl | ⊢ ( ( ( 𝑥 ·ℎ 𝑤 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ∈ ℋ ) | |
| 24 | 10 23 | sylan | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ∈ ℋ ) |
| 25 | 1 2 3 | cnlnadjlem1 | ⊢ ( ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ∈ ℋ → ( 𝐺 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) = ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) ·ih 𝑦 ) ) |
| 26 | 24 25 | syl | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( 𝐺 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) = ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) ·ih 𝑦 ) ) |
| 27 | 26 | adantll | ⊢ ( ( ( 𝑦 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( 𝐺 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) = ( ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) ·ih 𝑦 ) ) |
| 28 | 4 | ffvelcdmi | ⊢ ( 𝑤 ∈ ℋ → ( 𝑇 ‘ 𝑤 ) ∈ ℋ ) |
| 29 | ax-his3 | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑇 ‘ 𝑤 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑤 ) ) ·ih 𝑦 ) = ( 𝑥 · ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑦 ) ) ) | |
| 30 | 28 29 | syl3an2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑤 ) ) ·ih 𝑦 ) = ( 𝑥 · ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑦 ) ) ) |
| 31 | 30 | 3comr | ⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑤 ) ) ·ih 𝑦 ) = ( 𝑥 · ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑦 ) ) ) |
| 32 | 31 | 3expb | ⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑤 ) ) ·ih 𝑦 ) = ( 𝑥 · ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑦 ) ) ) |
| 33 | 1 | lnopmuli | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) → ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) = ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑤 ) ) ) |
| 34 | 33 | oveq1d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) → ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) ·ih 𝑦 ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑤 ) ) ·ih 𝑦 ) ) |
| 35 | 34 | adantl | ⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) ·ih 𝑦 ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑤 ) ) ·ih 𝑦 ) ) |
| 36 | 1 2 3 | cnlnadjlem1 | ⊢ ( 𝑤 ∈ ℋ → ( 𝐺 ‘ 𝑤 ) = ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑦 ) ) |
| 37 | 36 | oveq2d | ⊢ ( 𝑤 ∈ ℋ → ( 𝑥 · ( 𝐺 ‘ 𝑤 ) ) = ( 𝑥 · ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑦 ) ) ) |
| 38 | 37 | ad2antll | ⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) ) → ( 𝑥 · ( 𝐺 ‘ 𝑤 ) ) = ( 𝑥 · ( ( 𝑇 ‘ 𝑤 ) ·ih 𝑦 ) ) ) |
| 39 | 32 35 38 | 3eqtr4rd | ⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) ) → ( 𝑥 · ( 𝐺 ‘ 𝑤 ) ) = ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) ·ih 𝑦 ) ) |
| 40 | 1 2 3 | cnlnadjlem1 | ⊢ ( 𝑧 ∈ ℋ → ( 𝐺 ‘ 𝑧 ) = ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ) |
| 41 | 39 40 | oveqan12d | ⊢ ( ( ( 𝑦 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 · ( 𝐺 ‘ 𝑤 ) ) + ( 𝐺 ‘ 𝑧 ) ) = ( ( ( 𝑇 ‘ ( 𝑥 ·ℎ 𝑤 ) ) ·ih 𝑦 ) + ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ) ) |
| 42 | 22 27 41 | 3eqtr4d | ⊢ ( ( ( 𝑦 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) ) ∧ 𝑧 ∈ ℋ ) → ( 𝐺 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝐺 ‘ 𝑤 ) ) + ( 𝐺 ‘ 𝑧 ) ) ) |
| 43 | 42 | ralrimiva | ⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑥 ∈ ℂ ∧ 𝑤 ∈ ℋ ) ) → ∀ 𝑧 ∈ ℋ ( 𝐺 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝐺 ‘ 𝑤 ) ) + ( 𝐺 ‘ 𝑧 ) ) ) |
| 44 | 43 | ralrimivva | ⊢ ( 𝑦 ∈ ℋ → ∀ 𝑥 ∈ ℂ ∀ 𝑤 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝐺 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝐺 ‘ 𝑤 ) ) + ( 𝐺 ‘ 𝑧 ) ) ) |
| 45 | ellnfn | ⊢ ( 𝐺 ∈ LinFn ↔ ( 𝐺 : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑤 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝐺 ‘ ( ( 𝑥 ·ℎ 𝑤 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝐺 ‘ 𝑤 ) ) + ( 𝐺 ‘ 𝑧 ) ) ) ) | |
| 46 | 9 44 45 | sylanbrc | ⊢ ( 𝑦 ∈ ℋ → 𝐺 ∈ LinFn ) |
| 47 | 1 2 | nmcopexi | ⊢ ( normop ‘ 𝑇 ) ∈ ℝ |
| 48 | normcl | ⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ 𝑦 ) ∈ ℝ ) | |
| 49 | remulcl | ⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ ( normℎ ‘ 𝑦 ) ∈ ℝ ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) | |
| 50 | 47 48 49 | sylancr | ⊢ ( 𝑦 ∈ ℋ → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) |
| 51 | 40 | adantr | ⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝐺 ‘ 𝑧 ) = ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ) |
| 52 | hicl | ⊢ ( ( ( 𝑇 ‘ 𝑧 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ∈ ℂ ) | |
| 53 | 15 52 | sylan | ⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ∈ ℂ ) |
| 54 | 51 53 | eqeltrd | ⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
| 55 | 54 | abscld | ⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ∈ ℝ ) |
| 56 | normcl | ⊢ ( ( 𝑇 ‘ 𝑧 ) ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ∈ ℝ ) | |
| 57 | 15 56 | syl | ⊢ ( 𝑧 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ∈ ℝ ) |
| 58 | remulcl | ⊢ ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ∈ ℝ ∧ ( normℎ ‘ 𝑦 ) ∈ ℝ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) | |
| 59 | 57 48 58 | syl2an | ⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) |
| 60 | normcl | ⊢ ( 𝑧 ∈ ℋ → ( normℎ ‘ 𝑧 ) ∈ ℝ ) | |
| 61 | remulcl | ⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℝ ∧ ( normℎ ‘ 𝑧 ) ∈ ℝ ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ∈ ℝ ) | |
| 62 | 47 60 61 | sylancr | ⊢ ( 𝑧 ∈ ℋ → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ∈ ℝ ) |
| 63 | remulcl | ⊢ ( ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ∈ ℝ ∧ ( normℎ ‘ 𝑦 ) ∈ ℝ ) → ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) | |
| 64 | 62 48 63 | syl2an | ⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ) |
| 65 | 51 | fveq2d | ⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) = ( abs ‘ ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ) ) |
| 66 | bcs | ⊢ ( ( ( 𝑇 ‘ 𝑧 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ) ≤ ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) ) | |
| 67 | 15 66 | sylan | ⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( ( 𝑇 ‘ 𝑧 ) ·ih 𝑦 ) ) ≤ ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) ) |
| 68 | 65 67 | eqbrtrd | ⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) ) |
| 69 | 57 | adantr | ⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ∈ ℝ ) |
| 70 | 62 | adantr | ⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ∈ ℝ ) |
| 71 | normge0 | ⊢ ( 𝑦 ∈ ℋ → 0 ≤ ( normℎ ‘ 𝑦 ) ) | |
| 72 | 48 71 | jca | ⊢ ( 𝑦 ∈ ℋ → ( ( normℎ ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ 𝑦 ) ) ) |
| 73 | 72 | adantl | ⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( normℎ ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ 𝑦 ) ) ) |
| 74 | 1 2 | nmcoplbi | ⊢ ( 𝑧 ∈ ℋ → ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ) |
| 75 | 74 | adantr | ⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ) |
| 76 | lemul1a | ⊢ ( ( ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ∈ ℝ ∧ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ∈ ℝ ∧ ( ( normℎ ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( normℎ ‘ 𝑦 ) ) ) ∧ ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) ≤ ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) ) | |
| 77 | 69 70 73 75 76 | syl31anc | ⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( normℎ ‘ ( 𝑇 ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) ) |
| 78 | 55 59 64 68 77 | letrd | ⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) ) |
| 79 | 60 | recnd | ⊢ ( 𝑧 ∈ ℋ → ( normℎ ‘ 𝑧 ) ∈ ℂ ) |
| 80 | 48 | recnd | ⊢ ( 𝑦 ∈ ℋ → ( normℎ ‘ 𝑦 ) ∈ ℂ ) |
| 81 | 47 | recni | ⊢ ( normop ‘ 𝑇 ) ∈ ℂ |
| 82 | mul32 | ⊢ ( ( ( normop ‘ 𝑇 ) ∈ ℂ ∧ ( normℎ ‘ 𝑧 ) ∈ ℂ ∧ ( normℎ ‘ 𝑦 ) ∈ ℂ ) → ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) = ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) · ( normℎ ‘ 𝑧 ) ) ) | |
| 83 | 81 82 | mp3an1 | ⊢ ( ( ( normℎ ‘ 𝑧 ) ∈ ℂ ∧ ( normℎ ‘ 𝑦 ) ∈ ℂ ) → ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) = ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) · ( normℎ ‘ 𝑧 ) ) ) |
| 84 | 79 80 83 | syl2an | ⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑧 ) ) · ( normℎ ‘ 𝑦 ) ) = ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) · ( normℎ ‘ 𝑧 ) ) ) |
| 85 | 78 84 | breqtrd | ⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) · ( normℎ ‘ 𝑧 ) ) ) |
| 86 | 85 | ancoms | ⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) · ( normℎ ‘ 𝑧 ) ) ) |
| 87 | 86 | ralrimiva | ⊢ ( 𝑦 ∈ ℋ → ∀ 𝑧 ∈ ℋ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) · ( normℎ ‘ 𝑧 ) ) ) |
| 88 | oveq1 | ⊢ ( 𝑥 = ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) → ( 𝑥 · ( normℎ ‘ 𝑧 ) ) = ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) · ( normℎ ‘ 𝑧 ) ) ) | |
| 89 | 88 | breq2d | ⊢ ( 𝑥 = ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) → ( ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑧 ) ) ↔ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) · ( normℎ ‘ 𝑧 ) ) ) ) |
| 90 | 89 | ralbidv | ⊢ ( 𝑥 = ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) → ( ∀ 𝑧 ∈ ℋ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ℋ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) · ( normℎ ‘ 𝑧 ) ) ) ) |
| 91 | 90 | rspcev | ⊢ ( ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) ∈ ℝ ∧ ∀ 𝑧 ∈ ℋ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( ( ( normop ‘ 𝑇 ) · ( normℎ ‘ 𝑦 ) ) · ( normℎ ‘ 𝑧 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ℋ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑧 ) ) ) |
| 92 | 50 87 91 | syl2anc | ⊢ ( 𝑦 ∈ ℋ → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ℋ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑧 ) ) ) |
| 93 | lnfncon | ⊢ ( 𝐺 ∈ LinFn → ( 𝐺 ∈ ContFn ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ℋ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑧 ) ) ) ) | |
| 94 | 46 93 | syl | ⊢ ( 𝑦 ∈ ℋ → ( 𝐺 ∈ ContFn ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ℋ ( abs ‘ ( 𝐺 ‘ 𝑧 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑧 ) ) ) ) |
| 95 | 92 94 | mpbird | ⊢ ( 𝑦 ∈ ℋ → 𝐺 ∈ ContFn ) |
| 96 | 46 95 | jca | ⊢ ( 𝑦 ∈ ℋ → ( 𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn ) ) |