This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition equivalent to " T is continuous" when T is linear. Theorem 3.5(iii) of Beran p. 99. (Contributed by NM, 16-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lnfncon | ⊢ ( 𝑇 ∈ LinFn → ( 𝑇 ∈ ContFn ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝑇 = if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) → ( 𝑇 ∈ ContFn ↔ if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ∈ ContFn ) ) | |
| 2 | fveq1 | ⊢ ( 𝑇 = if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) → ( 𝑇 ‘ 𝑦 ) = ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝑦 ) ) | |
| 3 | 2 | fveq2d | ⊢ ( 𝑇 = if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) → ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) = ( abs ‘ ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝑦 ) ) ) |
| 4 | 3 | breq1d | ⊢ ( 𝑇 = if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) → ( ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ↔ ( abs ‘ ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ) |
| 5 | 4 | rexralbidv | ⊢ ( 𝑇 = if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( abs ‘ ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ) |
| 6 | 1 5 | bibi12d | ⊢ ( 𝑇 = if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) → ( ( 𝑇 ∈ ContFn ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ↔ ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ∈ ContFn ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( abs ‘ ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ) ) |
| 7 | 0lnfn | ⊢ ( ℋ × { 0 } ) ∈ LinFn | |
| 8 | 7 | elimel | ⊢ if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ∈ LinFn |
| 9 | 8 | lnfnconi | ⊢ ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ∈ ContFn ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( abs ‘ ( if ( 𝑇 ∈ LinFn , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) |
| 10 | 6 9 | dedth | ⊢ ( 𝑇 ∈ LinFn → ( 𝑇 ∈ ContFn ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ ( 𝑥 · ( normℎ ‘ 𝑦 ) ) ) ) |