This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Additive property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lnopl.1 | ⊢ 𝑇 ∈ LinOp | |
| Assertion | lnopaddi | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnopl.1 | ⊢ 𝑇 ∈ LinOp | |
| 2 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 3 | 1 | lnopli | ⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( ( 1 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( ( 1 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
| 4 | 2 3 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( ( 1 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( ( 1 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
| 5 | ax-hvmulid | ⊢ ( 𝐴 ∈ ℋ → ( 1 ·ℎ 𝐴 ) = 𝐴 ) | |
| 6 | 5 | fvoveq1d | ⊢ ( 𝐴 ∈ ℋ → ( 𝑇 ‘ ( ( 1 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( ( 1 ·ℎ 𝐴 ) +ℎ 𝐵 ) ) = ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) ) |
| 8 | 1 | lnopfi | ⊢ 𝑇 : ℋ ⟶ ℋ |
| 9 | 8 | ffvelcdmi | ⊢ ( 𝐴 ∈ ℋ → ( 𝑇 ‘ 𝐴 ) ∈ ℋ ) |
| 10 | ax-hvmulid | ⊢ ( ( 𝑇 ‘ 𝐴 ) ∈ ℋ → ( 1 ·ℎ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑇 ‘ 𝐴 ) ) | |
| 11 | 9 10 | syl | ⊢ ( 𝐴 ∈ ℋ → ( 1 ·ℎ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑇 ‘ 𝐴 ) ) |
| 12 | 11 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 1 ·ℎ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑇 ‘ 𝐴 ) ) |
| 13 | 12 | oveq1d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 1 ·ℎ ( 𝑇 ‘ 𝐴 ) ) +ℎ ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) |
| 14 | 4 7 13 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝑇 ‘ ( 𝐴 +ℎ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) +ℎ ( 𝑇 ‘ 𝐵 ) ) ) |