This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cnlnadji . By riesz4 , B is the unique vector such that ( Tv ) .ih y ) = ( v .ih w ) for all v . (Contributed by NM, 17-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnlnadjlem.1 | ⊢ 𝑇 ∈ LinOp | |
| cnlnadjlem.2 | ⊢ 𝑇 ∈ ContOp | ||
| cnlnadjlem.3 | ⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ) | ||
| cnlnadjlem.4 | ⊢ 𝐵 = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) | ||
| Assertion | cnlnadjlem3 | ⊢ ( 𝑦 ∈ ℋ → 𝐵 ∈ ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlnadjlem.1 | ⊢ 𝑇 ∈ LinOp | |
| 2 | cnlnadjlem.2 | ⊢ 𝑇 ∈ ContOp | |
| 3 | cnlnadjlem.3 | ⊢ 𝐺 = ( 𝑔 ∈ ℋ ↦ ( ( 𝑇 ‘ 𝑔 ) ·ih 𝑦 ) ) | |
| 4 | cnlnadjlem.4 | ⊢ 𝐵 = ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) | |
| 5 | 1 2 3 | cnlnadjlem2 | ⊢ ( 𝑦 ∈ ℋ → ( 𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn ) ) |
| 6 | elin | ⊢ ( 𝐺 ∈ ( LinFn ∩ ContFn ) ↔ ( 𝐺 ∈ LinFn ∧ 𝐺 ∈ ContFn ) ) | |
| 7 | 5 6 | sylibr | ⊢ ( 𝑦 ∈ ℋ → 𝐺 ∈ ( LinFn ∩ ContFn ) ) |
| 8 | riesz4 | ⊢ ( 𝐺 ∈ ( LinFn ∩ ContFn ) → ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝐺 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝑦 ∈ ℋ → ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝐺 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) |
| 10 | 1 2 3 | cnlnadjlem1 | ⊢ ( 𝑣 ∈ ℋ → ( 𝐺 ‘ 𝑣 ) = ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) ) |
| 11 | 10 | eqeq1d | ⊢ ( 𝑣 ∈ ℋ → ( ( 𝐺 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) ) |
| 12 | 11 | ralbiia | ⊢ ( ∀ 𝑣 ∈ ℋ ( 𝐺 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) |
| 13 | 12 | reubii | ⊢ ( ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝐺 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) |
| 14 | 9 13 | sylib | ⊢ ( 𝑦 ∈ ℋ → ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) |
| 15 | riotacl | ⊢ ( ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) → ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) ∈ ℋ ) | |
| 16 | 14 15 | syl | ⊢ ( 𝑦 ∈ ℋ → ( ℩ 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( ( 𝑇 ‘ 𝑣 ) ·ih 𝑦 ) = ( 𝑣 ·ih 𝑤 ) ) ∈ ℋ ) |
| 17 | 4 16 | eqeltrid | ⊢ ( 𝑦 ∈ ℋ → 𝐵 ∈ ℋ ) |