This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product. Postulate (S2) of Beran p. 95. (Contributed by NM, 31-Jul-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax-his2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) ·ih 𝐶 ) = ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | chba | ⊢ ℋ | |
| 2 | 0 1 | wcel | ⊢ 𝐴 ∈ ℋ |
| 3 | cB | ⊢ 𝐵 | |
| 4 | 3 1 | wcel | ⊢ 𝐵 ∈ ℋ |
| 5 | cC | ⊢ 𝐶 | |
| 6 | 5 1 | wcel | ⊢ 𝐶 ∈ ℋ |
| 7 | 2 4 6 | w3a | ⊢ ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) |
| 8 | cva | ⊢ +ℎ | |
| 9 | 0 3 8 | co | ⊢ ( 𝐴 +ℎ 𝐵 ) |
| 10 | csp | ⊢ ·ih | |
| 11 | 9 5 10 | co | ⊢ ( ( 𝐴 +ℎ 𝐵 ) ·ih 𝐶 ) |
| 12 | 0 5 10 | co | ⊢ ( 𝐴 ·ih 𝐶 ) |
| 13 | caddc | ⊢ + | |
| 14 | 3 5 10 | co | ⊢ ( 𝐵 ·ih 𝐶 ) |
| 15 | 12 14 13 | co | ⊢ ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐶 ) ) |
| 16 | 11 15 | wceq | ⊢ ( ( 𝐴 +ℎ 𝐵 ) ·ih 𝐶 ) = ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐶 ) ) |
| 17 | 7 16 | wi | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) ·ih 𝐶 ) = ( ( 𝐴 ·ih 𝐶 ) + ( 𝐵 ·ih 𝐶 ) ) ) |