This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property defining a linear functional. (Contributed by NM, 11-Feb-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ellnfn | ⊢ ( 𝑇 ∈ LinFn ↔ ( 𝑇 : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 | ⊢ ( 𝑡 = 𝑇 → ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) | |
| 2 | fveq1 | ⊢ ( 𝑡 = 𝑇 → ( 𝑡 ‘ 𝑦 ) = ( 𝑇 ‘ 𝑦 ) ) | |
| 3 | 2 | oveq2d | ⊢ ( 𝑡 = 𝑇 → ( 𝑥 · ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) ) |
| 4 | fveq1 | ⊢ ( 𝑡 = 𝑇 → ( 𝑡 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑧 ) ) | |
| 5 | 3 4 | oveq12d | ⊢ ( 𝑡 = 𝑇 → ( ( 𝑥 · ( 𝑡 ‘ 𝑦 ) ) + ( 𝑡 ‘ 𝑧 ) ) = ( ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) |
| 6 | 1 5 | eqeq12d | ⊢ ( 𝑡 = 𝑇 → ( ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑡 ‘ 𝑦 ) ) + ( 𝑡 ‘ 𝑧 ) ) ↔ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 7 | 6 | ralbidv | ⊢ ( 𝑡 = 𝑇 → ( ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑡 ‘ 𝑦 ) ) + ( 𝑡 ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 8 | 7 | 2ralbidv | ⊢ ( 𝑡 = 𝑇 → ( ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑡 ‘ 𝑦 ) ) + ( 𝑡 ‘ 𝑧 ) ) ↔ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 9 | df-lnfn | ⊢ LinFn = { 𝑡 ∈ ( ℂ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑡 ‘ 𝑦 ) ) + ( 𝑡 ‘ 𝑧 ) ) } | |
| 10 | 8 9 | elrab2 | ⊢ ( 𝑇 ∈ LinFn ↔ ( 𝑇 ∈ ( ℂ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 11 | cnex | ⊢ ℂ ∈ V | |
| 12 | ax-hilex | ⊢ ℋ ∈ V | |
| 13 | 11 12 | elmap | ⊢ ( 𝑇 ∈ ( ℂ ↑m ℋ ) ↔ 𝑇 : ℋ ⟶ ℂ ) |
| 14 | 13 | anbi1i | ⊢ ( ( 𝑇 ∈ ( ℂ ↑m ℋ ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) ↔ ( 𝑇 : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 15 | 10 14 | bitri | ⊢ ( 𝑇 ∈ LinFn ↔ ( 𝑇 : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( 𝑇 ‘ 𝑦 ) ) + ( 𝑇 ‘ 𝑧 ) ) ) ) |