This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The continuous extension of a given function F . (Contributed by Thierry Arnoux, 1-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnextfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| cnextfval.2 | ⊢ 𝐵 = ∪ 𝐾 | ||
| Assertion | cnextfval | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝑋 ) ) → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) = ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnextfval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | cnextfval.2 | ⊢ 𝐵 = ∪ 𝐾 | |
| 3 | cnextval | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 CnExt 𝐾 ) = ( 𝑓 ∈ ( ∪ 𝐾 ↑pm ∪ 𝐽 ) ↦ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) ) | |
| 4 | 3 | adantr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝑋 ) ) → ( 𝐽 CnExt 𝐾 ) = ( 𝑓 ∈ ( ∪ 𝐾 ↑pm ∪ 𝐽 ) ↦ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) ) ) |
| 5 | simpr | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝑋 ) ) ∧ 𝑓 = 𝐹 ) → 𝑓 = 𝐹 ) | |
| 6 | 5 | dmeqd | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝑋 ) ) ∧ 𝑓 = 𝐹 ) → dom 𝑓 = dom 𝐹 ) |
| 7 | simplrl | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝑋 ) ) ∧ 𝑓 = 𝐹 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 8 | 7 | fdmd | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝑋 ) ) ∧ 𝑓 = 𝐹 ) → dom 𝐹 = 𝐴 ) |
| 9 | 6 8 | eqtrd | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝑋 ) ) ∧ 𝑓 = 𝐹 ) → dom 𝑓 = 𝐴 ) |
| 10 | 9 | fveq2d | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝑋 ) ) ∧ 𝑓 = 𝐹 ) → ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) = ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 11 | 9 | oveq2d | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝑋 ) ) ∧ 𝑓 = 𝐹 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) |
| 12 | 11 | oveq2d | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝑋 ) ) ∧ 𝑓 = 𝐹 ) → ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) = ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ) |
| 13 | 12 5 | fveq12d | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝑋 ) ) ∧ 𝑓 = 𝐹 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) = ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 14 | 13 | xpeq2d | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝑋 ) ) ∧ 𝑓 = 𝐹 ) → ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) = ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
| 15 | 10 14 | iuneq12d | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝑋 ) ) ∧ 𝑓 = 𝐹 ) → ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t dom 𝑓 ) ) ‘ 𝑓 ) ) = ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
| 16 | uniexg | ⊢ ( 𝐾 ∈ Top → ∪ 𝐾 ∈ V ) | |
| 17 | 16 | ad2antlr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝑋 ) ) → ∪ 𝐾 ∈ V ) |
| 18 | uniexg | ⊢ ( 𝐽 ∈ Top → ∪ 𝐽 ∈ V ) | |
| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝑋 ) ) → ∪ 𝐽 ∈ V ) |
| 20 | eqid | ⊢ 𝐴 = 𝐴 | |
| 21 | 20 2 | feq23i | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ 𝐹 : 𝐴 ⟶ ∪ 𝐾 ) |
| 22 | 21 | biimpi | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 : 𝐴 ⟶ ∪ 𝐾 ) |
| 23 | 22 | ad2antrl | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝑋 ) ) → 𝐹 : 𝐴 ⟶ ∪ 𝐾 ) |
| 24 | 1 | sseq2i | ⊢ ( 𝐴 ⊆ 𝑋 ↔ 𝐴 ⊆ ∪ 𝐽 ) |
| 25 | 24 | biimpi | ⊢ ( 𝐴 ⊆ 𝑋 → 𝐴 ⊆ ∪ 𝐽 ) |
| 26 | 25 | ad2antll | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝑋 ) ) → 𝐴 ⊆ ∪ 𝐽 ) |
| 27 | elpm2r | ⊢ ( ( ( ∪ 𝐾 ∈ V ∧ ∪ 𝐽 ∈ V ) ∧ ( 𝐹 : 𝐴 ⟶ ∪ 𝐾 ∧ 𝐴 ⊆ ∪ 𝐽 ) ) → 𝐹 ∈ ( ∪ 𝐾 ↑pm ∪ 𝐽 ) ) | |
| 28 | 17 19 23 26 27 | syl22anc | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝑋 ) ) → 𝐹 ∈ ( ∪ 𝐾 ↑pm ∪ 𝐽 ) ) |
| 29 | fvex | ⊢ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∈ V | |
| 30 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 31 | fvex | ⊢ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∈ V | |
| 32 | 30 31 | xpex | ⊢ ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ∈ V |
| 33 | 29 32 | iunex | ⊢ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ∈ V |
| 34 | 33 | a1i | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝑋 ) ) → ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ∈ V ) |
| 35 | 4 15 28 34 | fvmptd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝑋 ) ) → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) = ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |