This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex function on a subset of the complex numbers is continuous if its domain is the union of relatively open subsets over which the function is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfuni.acn | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| cncfuni.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | ||
| cncfuni.auni | ⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝐵 ) | ||
| cncfuni.opn | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐴 ∩ 𝑏 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) | ||
| cncfuni.fcn | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ↾ 𝑏 ) ∈ ( ( 𝐴 ∩ 𝑏 ) –cn→ ℂ ) ) | ||
| Assertion | cncfuni | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfuni.acn | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) | |
| 2 | cncfuni.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 3 | cncfuni.auni | ⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝐵 ) | |
| 4 | cncfuni.opn | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐴 ∩ 𝑏 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) | |
| 5 | cncfuni.fcn | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ↾ 𝑏 ) ∈ ( ( 𝐴 ∩ 𝑏 ) –cn→ ℂ ) ) | |
| 6 | 3 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ∪ 𝐵 ) |
| 7 | eluni2 | ⊢ ( 𝑥 ∈ ∪ 𝐵 ↔ ∃ 𝑏 ∈ 𝐵 𝑥 ∈ 𝑏 ) | |
| 8 | 6 7 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑏 ∈ 𝐵 𝑥 ∈ 𝑏 ) |
| 9 | simp1l | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ 𝑏 ) → 𝜑 ) | |
| 10 | simp2 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ 𝑏 ) → 𝑏 ∈ 𝐵 ) | |
| 11 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝑏 ) ) | |
| 12 | 11 | biimpri | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝑏 ) → 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) |
| 13 | 12 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝑏 ) → 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) |
| 14 | 13 | 3adant2 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ 𝑏 ) → 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) |
| 15 | 2 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 16 | 15 | ineq2d | ⊢ ( 𝜑 → ( 𝑏 ∩ dom 𝐹 ) = ( 𝑏 ∩ 𝐴 ) ) |
| 17 | incom | ⊢ ( 𝑏 ∩ 𝐴 ) = ( 𝐴 ∩ 𝑏 ) | |
| 18 | 16 17 | eqtr2di | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝑏 ) = ( 𝑏 ∩ dom 𝐹 ) ) |
| 19 | 18 | reseq2d | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ↾ ( 𝑏 ∩ dom 𝐹 ) ) ) |
| 20 | frel | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → Rel 𝐹 ) | |
| 21 | 2 20 | syl | ⊢ ( 𝜑 → Rel 𝐹 ) |
| 22 | resindm | ⊢ ( Rel 𝐹 → ( 𝐹 ↾ ( 𝑏 ∩ dom 𝐹 ) ) = ( 𝐹 ↾ 𝑏 ) ) | |
| 23 | 21 22 | syl | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝑏 ∩ dom 𝐹 ) ) = ( 𝐹 ↾ 𝑏 ) ) |
| 24 | 19 23 | eqtrd | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐹 ↾ 𝑏 ) ) |
| 25 | inss1 | ⊢ ( 𝐴 ∩ 𝑏 ) ⊆ 𝐴 | |
| 26 | 25 | a1i | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝑏 ) ⊆ 𝐴 ) |
| 27 | 26 1 | sstrd | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝑏 ) ⊆ ℂ ) |
| 28 | ssidd | ⊢ ( 𝜑 → ℂ ⊆ ℂ ) | |
| 29 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 30 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) | |
| 31 | 29 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 32 | unicntop | ⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) | |
| 33 | 32 | restid | ⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) ) |
| 34 | 31 33 | ax-mp | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) |
| 35 | 34 | eqcomi | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 36 | 29 30 35 | cncfcn | ⊢ ( ( ( 𝐴 ∩ 𝑏 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 ∩ 𝑏 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 37 | 27 28 36 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝑏 ) –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 38 | 37 | eqcomd | ⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) = ( ( 𝐴 ∩ 𝑏 ) –cn→ ℂ ) ) |
| 39 | 24 38 | eleq12d | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 ↾ 𝑏 ) ∈ ( ( 𝐴 ∩ 𝑏 ) –cn→ ℂ ) ) ) |
| 40 | 39 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 ↾ 𝑏 ) ∈ ( ( 𝐴 ∩ 𝑏 ) –cn→ ℂ ) ) ) |
| 41 | 5 40 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 42 | 41 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 43 | 29 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 44 | 43 | a1i | ⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 45 | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 ∩ 𝑏 ) ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) ∈ ( TopOn ‘ ( 𝐴 ∩ 𝑏 ) ) ) | |
| 46 | 44 27 45 | syl2anc | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) ∈ ( TopOn ‘ ( 𝐴 ∩ 𝑏 ) ) ) |
| 47 | 46 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) ∈ ( TopOn ‘ ( 𝐴 ∩ 𝑏 ) ) ) |
| 48 | 43 | a1i | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 49 | cncnp | ⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) ∈ ( TopOn ‘ ( 𝐴 ∩ 𝑏 ) ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) : ( 𝐴 ∩ 𝑏 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) | |
| 50 | 47 48 49 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) : ( 𝐴 ∩ 𝑏 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) |
| 51 | 42 50 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) : ( 𝐴 ∩ 𝑏 ) ⟶ ℂ ∧ ∀ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) |
| 52 | 51 | simprd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ∀ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 53 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) | |
| 54 | rspa | ⊢ ( ( ∀ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) | |
| 55 | 52 53 54 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 56 | 31 | a1i | ⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ Top ) |
| 57 | cnex | ⊢ ℂ ∈ V | |
| 58 | 57 | ssex | ⊢ ( 𝐴 ⊆ ℂ → 𝐴 ∈ V ) |
| 59 | 1 58 | syl | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 60 | restabs | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝐴 ∩ 𝑏 ) ⊆ 𝐴 ∧ 𝐴 ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) ) | |
| 61 | 56 26 59 60 | syl3anc | ⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) ) |
| 62 | 61 | eqcomd | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) ) |
| 63 | 62 | oveq1d | ⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) = ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ) |
| 64 | 63 | fveq1d | ⊢ ( 𝜑 → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) = ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 65 | 64 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) = ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 66 | 55 65 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 67 | resttop | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝐴 ∈ V ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ Top ) | |
| 68 | 56 59 67 | syl2anc | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ Top ) |
| 69 | 68 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ Top ) |
| 70 | 32 | restuni | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝐴 ⊆ ℂ ) → 𝐴 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) |
| 71 | 56 1 70 | syl2anc | ⊢ ( 𝜑 → 𝐴 = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) |
| 72 | 26 71 | sseqtrd | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝑏 ) ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) |
| 73 | 72 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) |
| 74 | 4 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) |
| 75 | eqid | ⊢ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) = ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) | |
| 76 | 75 | isopn3 | ⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ Top ∧ ( 𝐴 ∩ 𝑏 ) ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) → ( ( 𝐴 ∩ 𝑏 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↔ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐴 ∩ 𝑏 ) ) ) |
| 77 | 69 73 76 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( ( 𝐴 ∩ 𝑏 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↔ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐴 ∩ 𝑏 ) ) ) |
| 78 | 74 77 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝑏 ) ) = ( 𝐴 ∩ 𝑏 ) ) |
| 79 | 78 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( 𝐴 ∩ 𝑏 ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝑏 ) ) ) |
| 80 | 53 79 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝑏 ) ) ) |
| 81 | 71 | feq2d | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ ℂ ↔ 𝐹 : ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ⟶ ℂ ) ) |
| 82 | 2 81 | mpbid | ⊢ ( 𝜑 → 𝐹 : ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ⟶ ℂ ) |
| 83 | 82 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → 𝐹 : ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ⟶ ℂ ) |
| 84 | 75 32 | cnprest | ⊢ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ Top ∧ ( 𝐴 ∩ 𝑏 ) ⊆ ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) ∧ ( 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ) ‘ ( 𝐴 ∩ 𝑏 ) ) ∧ 𝐹 : ∪ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ⟶ ℂ ) ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ↔ ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) |
| 85 | 69 73 80 83 84 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → ( 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ↔ ( 𝐹 ↾ ( 𝐴 ∩ 𝑏 ) ) ∈ ( ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ↾t ( 𝐴 ∩ 𝑏 ) ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) |
| 86 | 66 85 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ ( 𝐴 ∩ 𝑏 ) ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 87 | 9 10 14 86 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑏 ∈ 𝐵 ∧ 𝑥 ∈ 𝑏 ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 88 | 87 | rexlimdv3a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑏 ∈ 𝐵 𝑥 ∈ 𝑏 → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) |
| 89 | 8 88 | mpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 90 | 89 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) |
| 91 | resttopon | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ 𝐴 ⊆ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) | |
| 92 | 44 1 91 | syl2anc | ⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
| 93 | cncnp | ⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ∧ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) | |
| 94 | 92 44 93 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝐹 : 𝐴 ⟶ ℂ ∧ ∀ 𝑥 ∈ 𝐴 𝐹 ∈ ( ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) CnP ( TopOpen ‘ ℂfld ) ) ‘ 𝑥 ) ) ) ) |
| 95 | 2 90 94 | mpbir2and | ⊢ ( 𝜑 → 𝐹 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 96 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) | |
| 97 | 29 96 35 | cncfcn | ⊢ ( ( 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐴 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 98 | 1 28 97 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 –cn→ ℂ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 99 | 98 | eqcomd | ⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) Cn ( TopOpen ‘ ℂfld ) ) = ( 𝐴 –cn→ ℂ ) ) |
| 100 | 95 99 | eleqtrd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) |