This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex function on a subset of the complex numbers is continuous if its domain is the union of relatively open subsets over which the function is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfuni.acn | |- ( ph -> A C_ CC ) |
|
| cncfuni.f | |- ( ph -> F : A --> CC ) |
||
| cncfuni.auni | |- ( ph -> A C_ U. B ) |
||
| cncfuni.opn | |- ( ( ph /\ b e. B ) -> ( A i^i b ) e. ( ( TopOpen ` CCfld ) |`t A ) ) |
||
| cncfuni.fcn | |- ( ( ph /\ b e. B ) -> ( F |` b ) e. ( ( A i^i b ) -cn-> CC ) ) |
||
| Assertion | cncfuni | |- ( ph -> F e. ( A -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfuni.acn | |- ( ph -> A C_ CC ) |
|
| 2 | cncfuni.f | |- ( ph -> F : A --> CC ) |
|
| 3 | cncfuni.auni | |- ( ph -> A C_ U. B ) |
|
| 4 | cncfuni.opn | |- ( ( ph /\ b e. B ) -> ( A i^i b ) e. ( ( TopOpen ` CCfld ) |`t A ) ) |
|
| 5 | cncfuni.fcn | |- ( ( ph /\ b e. B ) -> ( F |` b ) e. ( ( A i^i b ) -cn-> CC ) ) |
|
| 6 | 3 | sselda | |- ( ( ph /\ x e. A ) -> x e. U. B ) |
| 7 | eluni2 | |- ( x e. U. B <-> E. b e. B x e. b ) |
|
| 8 | 6 7 | sylib | |- ( ( ph /\ x e. A ) -> E. b e. B x e. b ) |
| 9 | simp1l | |- ( ( ( ph /\ x e. A ) /\ b e. B /\ x e. b ) -> ph ) |
|
| 10 | simp2 | |- ( ( ( ph /\ x e. A ) /\ b e. B /\ x e. b ) -> b e. B ) |
|
| 11 | elin | |- ( x e. ( A i^i b ) <-> ( x e. A /\ x e. b ) ) |
|
| 12 | 11 | biimpri | |- ( ( x e. A /\ x e. b ) -> x e. ( A i^i b ) ) |
| 13 | 12 | adantll | |- ( ( ( ph /\ x e. A ) /\ x e. b ) -> x e. ( A i^i b ) ) |
| 14 | 13 | 3adant2 | |- ( ( ( ph /\ x e. A ) /\ b e. B /\ x e. b ) -> x e. ( A i^i b ) ) |
| 15 | 2 | fdmd | |- ( ph -> dom F = A ) |
| 16 | 15 | ineq2d | |- ( ph -> ( b i^i dom F ) = ( b i^i A ) ) |
| 17 | incom | |- ( b i^i A ) = ( A i^i b ) |
|
| 18 | 16 17 | eqtr2di | |- ( ph -> ( A i^i b ) = ( b i^i dom F ) ) |
| 19 | 18 | reseq2d | |- ( ph -> ( F |` ( A i^i b ) ) = ( F |` ( b i^i dom F ) ) ) |
| 20 | frel | |- ( F : A --> CC -> Rel F ) |
|
| 21 | 2 20 | syl | |- ( ph -> Rel F ) |
| 22 | resindm | |- ( Rel F -> ( F |` ( b i^i dom F ) ) = ( F |` b ) ) |
|
| 23 | 21 22 | syl | |- ( ph -> ( F |` ( b i^i dom F ) ) = ( F |` b ) ) |
| 24 | 19 23 | eqtrd | |- ( ph -> ( F |` ( A i^i b ) ) = ( F |` b ) ) |
| 25 | inss1 | |- ( A i^i b ) C_ A |
|
| 26 | 25 | a1i | |- ( ph -> ( A i^i b ) C_ A ) |
| 27 | 26 1 | sstrd | |- ( ph -> ( A i^i b ) C_ CC ) |
| 28 | ssidd | |- ( ph -> CC C_ CC ) |
|
| 29 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 30 | eqid | |- ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) = ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) |
|
| 31 | 29 | cnfldtop | |- ( TopOpen ` CCfld ) e. Top |
| 32 | unicntop | |- CC = U. ( TopOpen ` CCfld ) |
|
| 33 | 32 | restid | |- ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) |
| 34 | 31 33 | ax-mp | |- ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) |
| 35 | 34 | eqcomi | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 36 | 29 30 35 | cncfcn | |- ( ( ( A i^i b ) C_ CC /\ CC C_ CC ) -> ( ( A i^i b ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 37 | 27 28 36 | syl2anc | |- ( ph -> ( ( A i^i b ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 38 | 37 | eqcomd | |- ( ph -> ( ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) Cn ( TopOpen ` CCfld ) ) = ( ( A i^i b ) -cn-> CC ) ) |
| 39 | 24 38 | eleq12d | |- ( ph -> ( ( F |` ( A i^i b ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) Cn ( TopOpen ` CCfld ) ) <-> ( F |` b ) e. ( ( A i^i b ) -cn-> CC ) ) ) |
| 40 | 39 | adantr | |- ( ( ph /\ b e. B ) -> ( ( F |` ( A i^i b ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) Cn ( TopOpen ` CCfld ) ) <-> ( F |` b ) e. ( ( A i^i b ) -cn-> CC ) ) ) |
| 41 | 5 40 | mpbird | |- ( ( ph /\ b e. B ) -> ( F |` ( A i^i b ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 42 | 41 | 3adant3 | |- ( ( ph /\ b e. B /\ x e. ( A i^i b ) ) -> ( F |` ( A i^i b ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 43 | 29 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 44 | 43 | a1i | |- ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 45 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( A i^i b ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) e. ( TopOn ` ( A i^i b ) ) ) |
|
| 46 | 44 27 45 | syl2anc | |- ( ph -> ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) e. ( TopOn ` ( A i^i b ) ) ) |
| 47 | 46 | 3ad2ant1 | |- ( ( ph /\ b e. B /\ x e. ( A i^i b ) ) -> ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) e. ( TopOn ` ( A i^i b ) ) ) |
| 48 | 43 | a1i | |- ( ( ph /\ b e. B /\ x e. ( A i^i b ) ) -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 49 | cncnp | |- ( ( ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) e. ( TopOn ` ( A i^i b ) ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( ( F |` ( A i^i b ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) Cn ( TopOpen ` CCfld ) ) <-> ( ( F |` ( A i^i b ) ) : ( A i^i b ) --> CC /\ A. x e. ( A i^i b ) ( F |` ( A i^i b ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) ) |
|
| 50 | 47 48 49 | syl2anc | |- ( ( ph /\ b e. B /\ x e. ( A i^i b ) ) -> ( ( F |` ( A i^i b ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) Cn ( TopOpen ` CCfld ) ) <-> ( ( F |` ( A i^i b ) ) : ( A i^i b ) --> CC /\ A. x e. ( A i^i b ) ( F |` ( A i^i b ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) ) |
| 51 | 42 50 | mpbid | |- ( ( ph /\ b e. B /\ x e. ( A i^i b ) ) -> ( ( F |` ( A i^i b ) ) : ( A i^i b ) --> CC /\ A. x e. ( A i^i b ) ( F |` ( A i^i b ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) |
| 52 | 51 | simprd | |- ( ( ph /\ b e. B /\ x e. ( A i^i b ) ) -> A. x e. ( A i^i b ) ( F |` ( A i^i b ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) |
| 53 | simp3 | |- ( ( ph /\ b e. B /\ x e. ( A i^i b ) ) -> x e. ( A i^i b ) ) |
|
| 54 | rspa | |- ( ( A. x e. ( A i^i b ) ( F |` ( A i^i b ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) CnP ( TopOpen ` CCfld ) ) ` x ) /\ x e. ( A i^i b ) ) -> ( F |` ( A i^i b ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) |
|
| 55 | 52 53 54 | syl2anc | |- ( ( ph /\ b e. B /\ x e. ( A i^i b ) ) -> ( F |` ( A i^i b ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) |
| 56 | 31 | a1i | |- ( ph -> ( TopOpen ` CCfld ) e. Top ) |
| 57 | cnex | |- CC e. _V |
|
| 58 | 57 | ssex | |- ( A C_ CC -> A e. _V ) |
| 59 | 1 58 | syl | |- ( ph -> A e. _V ) |
| 60 | restabs | |- ( ( ( TopOpen ` CCfld ) e. Top /\ ( A i^i b ) C_ A /\ A e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t A ) |`t ( A i^i b ) ) = ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) ) |
|
| 61 | 56 26 59 60 | syl3anc | |- ( ph -> ( ( ( TopOpen ` CCfld ) |`t A ) |`t ( A i^i b ) ) = ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) ) |
| 62 | 61 | eqcomd | |- ( ph -> ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) = ( ( ( TopOpen ` CCfld ) |`t A ) |`t ( A i^i b ) ) ) |
| 63 | 62 | oveq1d | |- ( ph -> ( ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) CnP ( TopOpen ` CCfld ) ) = ( ( ( ( TopOpen ` CCfld ) |`t A ) |`t ( A i^i b ) ) CnP ( TopOpen ` CCfld ) ) ) |
| 64 | 63 | fveq1d | |- ( ph -> ( ( ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) CnP ( TopOpen ` CCfld ) ) ` x ) = ( ( ( ( ( TopOpen ` CCfld ) |`t A ) |`t ( A i^i b ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) |
| 65 | 64 | 3ad2ant1 | |- ( ( ph /\ b e. B /\ x e. ( A i^i b ) ) -> ( ( ( ( TopOpen ` CCfld ) |`t ( A i^i b ) ) CnP ( TopOpen ` CCfld ) ) ` x ) = ( ( ( ( ( TopOpen ` CCfld ) |`t A ) |`t ( A i^i b ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) |
| 66 | 55 65 | eleqtrd | |- ( ( ph /\ b e. B /\ x e. ( A i^i b ) ) -> ( F |` ( A i^i b ) ) e. ( ( ( ( ( TopOpen ` CCfld ) |`t A ) |`t ( A i^i b ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) |
| 67 | resttop | |- ( ( ( TopOpen ` CCfld ) e. Top /\ A e. _V ) -> ( ( TopOpen ` CCfld ) |`t A ) e. Top ) |
|
| 68 | 56 59 67 | syl2anc | |- ( ph -> ( ( TopOpen ` CCfld ) |`t A ) e. Top ) |
| 69 | 68 | 3ad2ant1 | |- ( ( ph /\ b e. B /\ x e. ( A i^i b ) ) -> ( ( TopOpen ` CCfld ) |`t A ) e. Top ) |
| 70 | 32 | restuni | |- ( ( ( TopOpen ` CCfld ) e. Top /\ A C_ CC ) -> A = U. ( ( TopOpen ` CCfld ) |`t A ) ) |
| 71 | 56 1 70 | syl2anc | |- ( ph -> A = U. ( ( TopOpen ` CCfld ) |`t A ) ) |
| 72 | 26 71 | sseqtrd | |- ( ph -> ( A i^i b ) C_ U. ( ( TopOpen ` CCfld ) |`t A ) ) |
| 73 | 72 | 3ad2ant1 | |- ( ( ph /\ b e. B /\ x e. ( A i^i b ) ) -> ( A i^i b ) C_ U. ( ( TopOpen ` CCfld ) |`t A ) ) |
| 74 | 4 | 3adant3 | |- ( ( ph /\ b e. B /\ x e. ( A i^i b ) ) -> ( A i^i b ) e. ( ( TopOpen ` CCfld ) |`t A ) ) |
| 75 | eqid | |- U. ( ( TopOpen ` CCfld ) |`t A ) = U. ( ( TopOpen ` CCfld ) |`t A ) |
|
| 76 | 75 | isopn3 | |- ( ( ( ( TopOpen ` CCfld ) |`t A ) e. Top /\ ( A i^i b ) C_ U. ( ( TopOpen ` CCfld ) |`t A ) ) -> ( ( A i^i b ) e. ( ( TopOpen ` CCfld ) |`t A ) <-> ( ( int ` ( ( TopOpen ` CCfld ) |`t A ) ) ` ( A i^i b ) ) = ( A i^i b ) ) ) |
| 77 | 69 73 76 | syl2anc | |- ( ( ph /\ b e. B /\ x e. ( A i^i b ) ) -> ( ( A i^i b ) e. ( ( TopOpen ` CCfld ) |`t A ) <-> ( ( int ` ( ( TopOpen ` CCfld ) |`t A ) ) ` ( A i^i b ) ) = ( A i^i b ) ) ) |
| 78 | 74 77 | mpbid | |- ( ( ph /\ b e. B /\ x e. ( A i^i b ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t A ) ) ` ( A i^i b ) ) = ( A i^i b ) ) |
| 79 | 78 | eqcomd | |- ( ( ph /\ b e. B /\ x e. ( A i^i b ) ) -> ( A i^i b ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t A ) ) ` ( A i^i b ) ) ) |
| 80 | 53 79 | eleqtrd | |- ( ( ph /\ b e. B /\ x e. ( A i^i b ) ) -> x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t A ) ) ` ( A i^i b ) ) ) |
| 81 | 71 | feq2d | |- ( ph -> ( F : A --> CC <-> F : U. ( ( TopOpen ` CCfld ) |`t A ) --> CC ) ) |
| 82 | 2 81 | mpbid | |- ( ph -> F : U. ( ( TopOpen ` CCfld ) |`t A ) --> CC ) |
| 83 | 82 | 3ad2ant1 | |- ( ( ph /\ b e. B /\ x e. ( A i^i b ) ) -> F : U. ( ( TopOpen ` CCfld ) |`t A ) --> CC ) |
| 84 | 75 32 | cnprest | |- ( ( ( ( ( TopOpen ` CCfld ) |`t A ) e. Top /\ ( A i^i b ) C_ U. ( ( TopOpen ` CCfld ) |`t A ) ) /\ ( x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t A ) ) ` ( A i^i b ) ) /\ F : U. ( ( TopOpen ` CCfld ) |`t A ) --> CC ) ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) <-> ( F |` ( A i^i b ) ) e. ( ( ( ( ( TopOpen ` CCfld ) |`t A ) |`t ( A i^i b ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) |
| 85 | 69 73 80 83 84 | syl22anc | |- ( ( ph /\ b e. B /\ x e. ( A i^i b ) ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) <-> ( F |` ( A i^i b ) ) e. ( ( ( ( ( TopOpen ` CCfld ) |`t A ) |`t ( A i^i b ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) |
| 86 | 66 85 | mpbird | |- ( ( ph /\ b e. B /\ x e. ( A i^i b ) ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) |
| 87 | 9 10 14 86 | syl3anc | |- ( ( ( ph /\ x e. A ) /\ b e. B /\ x e. b ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) |
| 88 | 87 | rexlimdv3a | |- ( ( ph /\ x e. A ) -> ( E. b e. B x e. b -> F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) |
| 89 | 8 88 | mpd | |- ( ( ph /\ x e. A ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) |
| 90 | 89 | ralrimiva | |- ( ph -> A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) |
| 91 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ A C_ CC ) -> ( ( TopOpen ` CCfld ) |`t A ) e. ( TopOn ` A ) ) |
|
| 92 | 44 1 91 | syl2anc | |- ( ph -> ( ( TopOpen ` CCfld ) |`t A ) e. ( TopOn ` A ) ) |
| 93 | cncnp | |- ( ( ( ( TopOpen ` CCfld ) |`t A ) e. ( TopOn ` A ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( F e. ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) <-> ( F : A --> CC /\ A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) ) |
|
| 94 | 92 44 93 | syl2anc | |- ( ph -> ( F e. ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) <-> ( F : A --> CC /\ A. x e. A F e. ( ( ( ( TopOpen ` CCfld ) |`t A ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) ) |
| 95 | 2 90 94 | mpbir2and | |- ( ph -> F e. ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) ) |
| 96 | eqid | |- ( ( TopOpen ` CCfld ) |`t A ) = ( ( TopOpen ` CCfld ) |`t A ) |
|
| 97 | 29 96 35 | cncfcn | |- ( ( A C_ CC /\ CC C_ CC ) -> ( A -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) ) |
| 98 | 1 28 97 | syl2anc | |- ( ph -> ( A -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) ) |
| 99 | 98 | eqcomd | |- ( ph -> ( ( ( TopOpen ` CCfld ) |`t A ) Cn ( TopOpen ` CCfld ) ) = ( A -cn-> CC ) ) |
| 100 | 95 99 | eleqtrd | |- ( ph -> F e. ( A -cn-> CC ) ) |