This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of the preimage of a closure. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cncls2i.1 | ⊢ 𝑌 = ∪ 𝐾 | |
| Assertion | cncls2i | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑌 ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑆 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncls2i.1 | ⊢ 𝑌 = ∪ 𝐾 | |
| 2 | cntop2 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) | |
| 3 | 1 | clscld | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑆 ⊆ 𝑌 ) → ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐾 ) ) |
| 4 | 2 3 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑌 ) → ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐾 ) ) |
| 5 | cnclima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐾 ) ) → ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ) ∈ ( Clsd ‘ 𝐽 ) ) | |
| 6 | 4 5 | syldan | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑌 ) → ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 7 | 1 | sscls | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑆 ⊆ 𝑌 ) → 𝑆 ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ) |
| 8 | 2 7 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑌 ) → 𝑆 ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ) |
| 9 | imass2 | ⊢ ( 𝑆 ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) → ( ◡ 𝐹 “ 𝑆 ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑌 ) → ( ◡ 𝐹 “ 𝑆 ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ) ) |
| 11 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 12 | 11 | clsss2 | ⊢ ( ( ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ) ∈ ( Clsd ‘ 𝐽 ) ∧ ( ◡ 𝐹 “ 𝑆 ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑆 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ) ) |
| 13 | 6 10 12 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑆 ⊆ 𝑌 ) → ( ( cls ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ 𝑆 ) ) ⊆ ( ◡ 𝐹 “ ( ( cls ‘ 𝐾 ) ‘ 𝑆 ) ) ) |