This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a cofinal subset of A of cardinality ( cfA ) . (Contributed by Mario Carneiro, 24-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cfss.1 | ⊢ 𝐴 ∈ V | |
| Assertion | cfss | ⊢ ( Lim 𝐴 → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ( cf ‘ 𝐴 ) ∧ ∪ 𝑥 = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfss.1 | ⊢ 𝐴 ∈ V | |
| 2 | 1 | cflim3 | ⊢ ( Lim 𝐴 → ( cf ‘ 𝐴 ) = ∩ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( card ‘ 𝑥 ) ) |
| 3 | fvex | ⊢ ( card ‘ 𝑥 ) ∈ V | |
| 4 | 3 | dfiin2 | ⊢ ∩ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( card ‘ 𝑥 ) = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } |
| 5 | cardon | ⊢ ( card ‘ 𝑥 ) ∈ On | |
| 6 | eleq1 | ⊢ ( 𝑦 = ( card ‘ 𝑥 ) → ( 𝑦 ∈ On ↔ ( card ‘ 𝑥 ) ∈ On ) ) | |
| 7 | 5 6 | mpbiri | ⊢ ( 𝑦 = ( card ‘ 𝑥 ) → 𝑦 ∈ On ) |
| 8 | 7 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) → 𝑦 ∈ On ) |
| 9 | 8 | abssi | ⊢ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } ⊆ On |
| 10 | limuni | ⊢ ( Lim 𝐴 → 𝐴 = ∪ 𝐴 ) | |
| 11 | 10 | eqcomd | ⊢ ( Lim 𝐴 → ∪ 𝐴 = 𝐴 ) |
| 12 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( card ‘ 𝑥 ) = ( card ‘ 𝐴 ) ) | |
| 13 | 12 | eqcomd | ⊢ ( 𝑥 = 𝐴 → ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) |
| 14 | 13 | biantrud | ⊢ ( 𝑥 = 𝐴 → ( ∪ 𝐴 = 𝐴 ↔ ( ∪ 𝐴 = 𝐴 ∧ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) ) |
| 15 | unieq | ⊢ ( 𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴 ) | |
| 16 | 15 | eqeq1d | ⊢ ( 𝑥 = 𝐴 → ( ∪ 𝑥 = 𝐴 ↔ ∪ 𝐴 = 𝐴 ) ) |
| 17 | 1 | pwid | ⊢ 𝐴 ∈ 𝒫 𝐴 |
| 18 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝐴 ∈ 𝒫 𝐴 ) ) | |
| 19 | 17 18 | mpbiri | ⊢ ( 𝑥 = 𝐴 → 𝑥 ∈ 𝒫 𝐴 ) |
| 20 | 19 | biantrurd | ⊢ ( 𝑥 = 𝐴 → ( ∪ 𝑥 = 𝐴 ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ) ) |
| 21 | 16 20 | bitr3d | ⊢ ( 𝑥 = 𝐴 → ( ∪ 𝐴 = 𝐴 ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ) ) |
| 22 | 21 | anbi1d | ⊢ ( 𝑥 = 𝐴 → ( ( ∪ 𝐴 = 𝐴 ∧ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ↔ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ∧ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) ) |
| 23 | 14 22 | bitr2d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ∧ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ↔ ∪ 𝐴 = 𝐴 ) ) |
| 24 | 1 23 | spcev | ⊢ ( ∪ 𝐴 = 𝐴 → ∃ 𝑥 ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ∧ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) |
| 25 | 11 24 | syl | ⊢ ( Lim 𝐴 → ∃ 𝑥 ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ∧ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) |
| 26 | df-rex | ⊢ ( ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) | |
| 27 | rabid | ⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ) | |
| 28 | 27 | anbi1i | ⊢ ( ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ↔ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ∧ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) |
| 29 | 28 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ↔ ∃ 𝑥 ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ∧ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) |
| 30 | 26 29 | bitri | ⊢ ( ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ↔ ∃ 𝑥 ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ∧ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) |
| 31 | 25 30 | sylibr | ⊢ ( Lim 𝐴 → ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) |
| 32 | fvex | ⊢ ( card ‘ 𝐴 ) ∈ V | |
| 33 | eqeq1 | ⊢ ( 𝑦 = ( card ‘ 𝐴 ) → ( 𝑦 = ( card ‘ 𝑥 ) ↔ ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) | |
| 34 | 33 | rexbidv | ⊢ ( 𝑦 = ( card ‘ 𝐴 ) → ( ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) |
| 35 | 32 34 | spcev | ⊢ ( ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( card ‘ 𝐴 ) = ( card ‘ 𝑥 ) → ∃ 𝑦 ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) ) |
| 36 | 31 35 | syl | ⊢ ( Lim 𝐴 → ∃ 𝑦 ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) ) |
| 37 | abn0 | ⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } ≠ ∅ ↔ ∃ 𝑦 ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) ) | |
| 38 | 36 37 | sylibr | ⊢ ( Lim 𝐴 → { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } ≠ ∅ ) |
| 39 | onint | ⊢ ( ( { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } ⊆ On ∧ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } ≠ ∅ ) → ∩ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } ∈ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } ) | |
| 40 | 9 38 39 | sylancr | ⊢ ( Lim 𝐴 → ∩ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } ∈ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } ) |
| 41 | 4 40 | eqeltrid | ⊢ ( Lim 𝐴 → ∩ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( card ‘ 𝑥 ) ∈ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } ) |
| 42 | 2 41 | eqeltrd | ⊢ ( Lim 𝐴 → ( cf ‘ 𝐴 ) ∈ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } ) |
| 43 | fvex | ⊢ ( cf ‘ 𝐴 ) ∈ V | |
| 44 | eqeq1 | ⊢ ( 𝑦 = ( cf ‘ 𝐴 ) → ( 𝑦 = ( card ‘ 𝑥 ) ↔ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) | |
| 45 | 44 | rexbidv | ⊢ ( 𝑦 = ( cf ‘ 𝐴 ) → ( ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) |
| 46 | 43 45 | elab | ⊢ ( ( cf ‘ 𝐴 ) ∈ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } ↔ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) |
| 47 | 42 46 | sylib | ⊢ ( Lim 𝐴 → ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) |
| 48 | df-rex | ⊢ ( ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) | |
| 49 | 47 48 | sylib | ⊢ ( Lim 𝐴 → ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) |
| 50 | simprl | ⊢ ( ( Lim 𝐴 ∧ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) → 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ) | |
| 51 | 50 27 | sylib | ⊢ ( ( Lim 𝐴 ∧ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) → ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ) |
| 52 | 51 | simpld | ⊢ ( ( Lim 𝐴 ∧ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) → 𝑥 ∈ 𝒫 𝐴 ) |
| 53 | 52 | elpwid | ⊢ ( ( Lim 𝐴 ∧ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) → 𝑥 ⊆ 𝐴 ) |
| 54 | simpl | ⊢ ( ( Lim 𝐴 ∧ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) → Lim 𝐴 ) | |
| 55 | vex | ⊢ 𝑥 ∈ V | |
| 56 | limord | ⊢ ( Lim 𝐴 → Ord 𝐴 ) | |
| 57 | ordsson | ⊢ ( Ord 𝐴 → 𝐴 ⊆ On ) | |
| 58 | 56 57 | syl | ⊢ ( Lim 𝐴 → 𝐴 ⊆ On ) |
| 59 | sstr | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝐴 ⊆ On ) → 𝑥 ⊆ On ) | |
| 60 | 58 59 | sylan2 | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ Lim 𝐴 ) → 𝑥 ⊆ On ) |
| 61 | onssnum | ⊢ ( ( 𝑥 ∈ V ∧ 𝑥 ⊆ On ) → 𝑥 ∈ dom card ) | |
| 62 | 55 60 61 | sylancr | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ Lim 𝐴 ) → 𝑥 ∈ dom card ) |
| 63 | cardid2 | ⊢ ( 𝑥 ∈ dom card → ( card ‘ 𝑥 ) ≈ 𝑥 ) | |
| 64 | 62 63 | syl | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ Lim 𝐴 ) → ( card ‘ 𝑥 ) ≈ 𝑥 ) |
| 65 | 64 | ensymd | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ Lim 𝐴 ) → 𝑥 ≈ ( card ‘ 𝑥 ) ) |
| 66 | 53 54 65 | syl2anc | ⊢ ( ( Lim 𝐴 ∧ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) → 𝑥 ≈ ( card ‘ 𝑥 ) ) |
| 67 | simprr | ⊢ ( ( Lim 𝐴 ∧ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) → ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) | |
| 68 | 66 67 | breqtrrd | ⊢ ( ( Lim 𝐴 ∧ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) → 𝑥 ≈ ( cf ‘ 𝐴 ) ) |
| 69 | 51 | simprd | ⊢ ( ( Lim 𝐴 ∧ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) → ∪ 𝑥 = 𝐴 ) |
| 70 | 53 68 69 | 3jca | ⊢ ( ( Lim 𝐴 ∧ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) ) → ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ( cf ‘ 𝐴 ) ∧ ∪ 𝑥 = 𝐴 ) ) |
| 71 | 70 | ex | ⊢ ( Lim 𝐴 → ( ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) → ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ( cf ‘ 𝐴 ) ∧ ∪ 𝑥 = 𝐴 ) ) ) |
| 72 | 71 | eximdv | ⊢ ( Lim 𝐴 → ( ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ ( cf ‘ 𝐴 ) = ( card ‘ 𝑥 ) ) → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ( cf ‘ 𝐴 ) ∧ ∪ 𝑥 = 𝐴 ) ) ) |
| 73 | 49 72 | mpd | ⊢ ( Lim 𝐴 → ∃ 𝑥 ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ( cf ‘ 𝐴 ) ∧ ∪ 𝑥 = 𝐴 ) ) |