This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a cofinal subset of A of cardinality ( cfA ) . (Contributed by Mario Carneiro, 24-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cfss.1 | |- A e. _V |
|
| Assertion | cfss | |- ( Lim A -> E. x ( x C_ A /\ x ~~ ( cf ` A ) /\ U. x = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfss.1 | |- A e. _V |
|
| 2 | 1 | cflim3 | |- ( Lim A -> ( cf ` A ) = |^|_ x e. { x e. ~P A | U. x = A } ( card ` x ) ) |
| 3 | fvex | |- ( card ` x ) e. _V |
|
| 4 | 3 | dfiin2 | |- |^|_ x e. { x e. ~P A | U. x = A } ( card ` x ) = |^| { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } |
| 5 | cardon | |- ( card ` x ) e. On |
|
| 6 | eleq1 | |- ( y = ( card ` x ) -> ( y e. On <-> ( card ` x ) e. On ) ) |
|
| 7 | 5 6 | mpbiri | |- ( y = ( card ` x ) -> y e. On ) |
| 8 | 7 | rexlimivw | |- ( E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) -> y e. On ) |
| 9 | 8 | abssi | |- { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } C_ On |
| 10 | limuni | |- ( Lim A -> A = U. A ) |
|
| 11 | 10 | eqcomd | |- ( Lim A -> U. A = A ) |
| 12 | fveq2 | |- ( x = A -> ( card ` x ) = ( card ` A ) ) |
|
| 13 | 12 | eqcomd | |- ( x = A -> ( card ` A ) = ( card ` x ) ) |
| 14 | 13 | biantrud | |- ( x = A -> ( U. A = A <-> ( U. A = A /\ ( card ` A ) = ( card ` x ) ) ) ) |
| 15 | unieq | |- ( x = A -> U. x = U. A ) |
|
| 16 | 15 | eqeq1d | |- ( x = A -> ( U. x = A <-> U. A = A ) ) |
| 17 | 1 | pwid | |- A e. ~P A |
| 18 | eleq1 | |- ( x = A -> ( x e. ~P A <-> A e. ~P A ) ) |
|
| 19 | 17 18 | mpbiri | |- ( x = A -> x e. ~P A ) |
| 20 | 19 | biantrurd | |- ( x = A -> ( U. x = A <-> ( x e. ~P A /\ U. x = A ) ) ) |
| 21 | 16 20 | bitr3d | |- ( x = A -> ( U. A = A <-> ( x e. ~P A /\ U. x = A ) ) ) |
| 22 | 21 | anbi1d | |- ( x = A -> ( ( U. A = A /\ ( card ` A ) = ( card ` x ) ) <-> ( ( x e. ~P A /\ U. x = A ) /\ ( card ` A ) = ( card ` x ) ) ) ) |
| 23 | 14 22 | bitr2d | |- ( x = A -> ( ( ( x e. ~P A /\ U. x = A ) /\ ( card ` A ) = ( card ` x ) ) <-> U. A = A ) ) |
| 24 | 1 23 | spcev | |- ( U. A = A -> E. x ( ( x e. ~P A /\ U. x = A ) /\ ( card ` A ) = ( card ` x ) ) ) |
| 25 | 11 24 | syl | |- ( Lim A -> E. x ( ( x e. ~P A /\ U. x = A ) /\ ( card ` A ) = ( card ` x ) ) ) |
| 26 | df-rex | |- ( E. x e. { x e. ~P A | U. x = A } ( card ` A ) = ( card ` x ) <-> E. x ( x e. { x e. ~P A | U. x = A } /\ ( card ` A ) = ( card ` x ) ) ) |
|
| 27 | rabid | |- ( x e. { x e. ~P A | U. x = A } <-> ( x e. ~P A /\ U. x = A ) ) |
|
| 28 | 27 | anbi1i | |- ( ( x e. { x e. ~P A | U. x = A } /\ ( card ` A ) = ( card ` x ) ) <-> ( ( x e. ~P A /\ U. x = A ) /\ ( card ` A ) = ( card ` x ) ) ) |
| 29 | 28 | exbii | |- ( E. x ( x e. { x e. ~P A | U. x = A } /\ ( card ` A ) = ( card ` x ) ) <-> E. x ( ( x e. ~P A /\ U. x = A ) /\ ( card ` A ) = ( card ` x ) ) ) |
| 30 | 26 29 | bitri | |- ( E. x e. { x e. ~P A | U. x = A } ( card ` A ) = ( card ` x ) <-> E. x ( ( x e. ~P A /\ U. x = A ) /\ ( card ` A ) = ( card ` x ) ) ) |
| 31 | 25 30 | sylibr | |- ( Lim A -> E. x e. { x e. ~P A | U. x = A } ( card ` A ) = ( card ` x ) ) |
| 32 | fvex | |- ( card ` A ) e. _V |
|
| 33 | eqeq1 | |- ( y = ( card ` A ) -> ( y = ( card ` x ) <-> ( card ` A ) = ( card ` x ) ) ) |
|
| 34 | 33 | rexbidv | |- ( y = ( card ` A ) -> ( E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) <-> E. x e. { x e. ~P A | U. x = A } ( card ` A ) = ( card ` x ) ) ) |
| 35 | 32 34 | spcev | |- ( E. x e. { x e. ~P A | U. x = A } ( card ` A ) = ( card ` x ) -> E. y E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) ) |
| 36 | 31 35 | syl | |- ( Lim A -> E. y E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) ) |
| 37 | abn0 | |- ( { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } =/= (/) <-> E. y E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) ) |
|
| 38 | 36 37 | sylibr | |- ( Lim A -> { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } =/= (/) ) |
| 39 | onint | |- ( ( { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } C_ On /\ { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } =/= (/) ) -> |^| { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } e. { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } ) |
|
| 40 | 9 38 39 | sylancr | |- ( Lim A -> |^| { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } e. { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } ) |
| 41 | 4 40 | eqeltrid | |- ( Lim A -> |^|_ x e. { x e. ~P A | U. x = A } ( card ` x ) e. { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } ) |
| 42 | 2 41 | eqeltrd | |- ( Lim A -> ( cf ` A ) e. { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } ) |
| 43 | fvex | |- ( cf ` A ) e. _V |
|
| 44 | eqeq1 | |- ( y = ( cf ` A ) -> ( y = ( card ` x ) <-> ( cf ` A ) = ( card ` x ) ) ) |
|
| 45 | 44 | rexbidv | |- ( y = ( cf ` A ) -> ( E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) <-> E. x e. { x e. ~P A | U. x = A } ( cf ` A ) = ( card ` x ) ) ) |
| 46 | 43 45 | elab | |- ( ( cf ` A ) e. { y | E. x e. { x e. ~P A | U. x = A } y = ( card ` x ) } <-> E. x e. { x e. ~P A | U. x = A } ( cf ` A ) = ( card ` x ) ) |
| 47 | 42 46 | sylib | |- ( Lim A -> E. x e. { x e. ~P A | U. x = A } ( cf ` A ) = ( card ` x ) ) |
| 48 | df-rex | |- ( E. x e. { x e. ~P A | U. x = A } ( cf ` A ) = ( card ` x ) <-> E. x ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) ) |
|
| 49 | 47 48 | sylib | |- ( Lim A -> E. x ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) ) |
| 50 | simprl | |- ( ( Lim A /\ ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) ) -> x e. { x e. ~P A | U. x = A } ) |
|
| 51 | 50 27 | sylib | |- ( ( Lim A /\ ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) ) -> ( x e. ~P A /\ U. x = A ) ) |
| 52 | 51 | simpld | |- ( ( Lim A /\ ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) ) -> x e. ~P A ) |
| 53 | 52 | elpwid | |- ( ( Lim A /\ ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) ) -> x C_ A ) |
| 54 | simpl | |- ( ( Lim A /\ ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) ) -> Lim A ) |
|
| 55 | vex | |- x e. _V |
|
| 56 | limord | |- ( Lim A -> Ord A ) |
|
| 57 | ordsson | |- ( Ord A -> A C_ On ) |
|
| 58 | 56 57 | syl | |- ( Lim A -> A C_ On ) |
| 59 | sstr | |- ( ( x C_ A /\ A C_ On ) -> x C_ On ) |
|
| 60 | 58 59 | sylan2 | |- ( ( x C_ A /\ Lim A ) -> x C_ On ) |
| 61 | onssnum | |- ( ( x e. _V /\ x C_ On ) -> x e. dom card ) |
|
| 62 | 55 60 61 | sylancr | |- ( ( x C_ A /\ Lim A ) -> x e. dom card ) |
| 63 | cardid2 | |- ( x e. dom card -> ( card ` x ) ~~ x ) |
|
| 64 | 62 63 | syl | |- ( ( x C_ A /\ Lim A ) -> ( card ` x ) ~~ x ) |
| 65 | 64 | ensymd | |- ( ( x C_ A /\ Lim A ) -> x ~~ ( card ` x ) ) |
| 66 | 53 54 65 | syl2anc | |- ( ( Lim A /\ ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) ) -> x ~~ ( card ` x ) ) |
| 67 | simprr | |- ( ( Lim A /\ ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) ) -> ( cf ` A ) = ( card ` x ) ) |
|
| 68 | 66 67 | breqtrrd | |- ( ( Lim A /\ ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) ) -> x ~~ ( cf ` A ) ) |
| 69 | 51 | simprd | |- ( ( Lim A /\ ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) ) -> U. x = A ) |
| 70 | 53 68 69 | 3jca | |- ( ( Lim A /\ ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) ) -> ( x C_ A /\ x ~~ ( cf ` A ) /\ U. x = A ) ) |
| 71 | 70 | ex | |- ( Lim A -> ( ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) -> ( x C_ A /\ x ~~ ( cf ` A ) /\ U. x = A ) ) ) |
| 72 | 71 | eximdv | |- ( Lim A -> ( E. x ( x e. { x e. ~P A | U. x = A } /\ ( cf ` A ) = ( card ` x ) ) -> E. x ( x C_ A /\ x ~~ ( cf ` A ) /\ U. x = A ) ) ) |
| 73 | 49 72 | mpd | |- ( Lim A -> E. x ( x C_ A /\ x ~~ ( cf ` A ) /\ U. x = A ) ) |