This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express a nondecreasing sequence of four integers. (Contributed by Stefan O'Rear, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzass4 | ⊢ ( ( 𝐵 ∈ ( 𝐴 ... 𝐷 ) ∧ 𝐶 ∈ ( 𝐵 ... 𝐷 ) ) ↔ ( 𝐵 ∈ ( 𝐴 ... 𝐶 ) ∧ 𝐶 ∈ ( 𝐴 ... 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) | |
| 2 | simprl | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) | |
| 3 | 1 2 | jca | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) |
| 4 | uztrn | ⊢ ( ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ) | |
| 5 | 4 | ancoms | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
| 6 | 5 | ad2ant2r | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
| 7 | simprr | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) | |
| 8 | 3 6 7 | jca32 | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) ) |
| 9 | simpll | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ) | |
| 10 | uztrn | ⊢ ( ( 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) → 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) | |
| 11 | 10 | ancoms | ⊢ ( ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) → 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
| 12 | 11 | ad2ant2l | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
| 13 | 9 12 | jca | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) |
| 14 | simplr | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) | |
| 15 | simprr | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) | |
| 16 | 13 14 15 | jca32 | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) → ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) ) |
| 17 | 8 16 | impbii | ⊢ ( ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) ↔ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) ) |
| 18 | elfzuzb | ⊢ ( 𝐵 ∈ ( 𝐴 ... 𝐷 ) ↔ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) | |
| 19 | elfzuzb | ⊢ ( 𝐶 ∈ ( 𝐵 ... 𝐷 ) ↔ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) | |
| 20 | 18 19 | anbi12i | ⊢ ( ( 𝐵 ∈ ( 𝐴 ... 𝐷 ) ∧ 𝐶 ∈ ( 𝐵 ... 𝐷 ) ) ↔ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) ) |
| 21 | elfzuzb | ⊢ ( 𝐵 ∈ ( 𝐴 ... 𝐶 ) ↔ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) | |
| 22 | elfzuzb | ⊢ ( 𝐶 ∈ ( 𝐴 ... 𝐷 ) ↔ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) | |
| 23 | 21 22 | anbi12i | ⊢ ( ( 𝐵 ∈ ( 𝐴 ... 𝐶 ) ∧ 𝐶 ∈ ( 𝐴 ... 𝐷 ) ) ↔ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐶 ∈ ( ℤ≥ ‘ 𝐵 ) ) ∧ ( 𝐶 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐷 ∈ ( ℤ≥ ‘ 𝐶 ) ) ) ) |
| 24 | 17 20 23 | 3bitr4i | ⊢ ( ( 𝐵 ∈ ( 𝐴 ... 𝐷 ) ∧ 𝐶 ∈ ( 𝐵 ... 𝐷 ) ) ↔ ( 𝐵 ∈ ( 𝐴 ... 𝐶 ) ∧ 𝐶 ∈ ( 𝐴 ... 𝐷 ) ) ) |