This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A symbol in an extracted subword, indexed using the subword's indices. (Contributed by Stefan O'Rear, 16-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrdfv | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ∧ 𝑋 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) → ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ‘ 𝑋 ) = ( 𝑆 ‘ ( 𝑋 + 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swrdval2 | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) = ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) ) ) | |
| 2 | 1 | fveq1d | ⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ‘ 𝑋 ) = ( ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) ) ‘ 𝑋 ) ) |
| 3 | fvoveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) = ( 𝑆 ‘ ( 𝑋 + 𝐹 ) ) ) | |
| 4 | eqid | ⊢ ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) ) = ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) ) | |
| 5 | fvex | ⊢ ( 𝑆 ‘ ( 𝑋 + 𝐹 ) ) ∈ V | |
| 6 | 3 4 5 | fvmpt | ⊢ ( 𝑋 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) → ( ( 𝑥 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ↦ ( 𝑆 ‘ ( 𝑥 + 𝐹 ) ) ) ‘ 𝑋 ) = ( 𝑆 ‘ ( 𝑋 + 𝐹 ) ) ) |
| 7 | 2 6 | sylan9eq | ⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ∧ 𝑋 ∈ ( 0 ..^ ( 𝐿 − 𝐹 ) ) ) → ( ( 𝑆 substr 〈 𝐹 , 𝐿 〉 ) ‘ 𝑋 ) = ( 𝑆 ‘ ( 𝑋 + 𝐹 ) ) ) |