This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Recover the right half of a concatenated word. (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrdccat2 | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( 𝑆 ++ 𝑇 ) substr 〈 ( ♯ ‘ 𝑆 ) , ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) 〉 ) = 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatcl | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 𝑆 ++ 𝑇 ) ∈ Word 𝐵 ) | |
| 2 | swrdcl | ⊢ ( ( 𝑆 ++ 𝑇 ) ∈ Word 𝐵 → ( ( 𝑆 ++ 𝑇 ) substr 〈 ( ♯ ‘ 𝑆 ) , ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) 〉 ) ∈ Word 𝐵 ) | |
| 3 | wrdfn | ⊢ ( ( ( 𝑆 ++ 𝑇 ) substr 〈 ( ♯ ‘ 𝑆 ) , ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) 〉 ) ∈ Word 𝐵 → ( ( 𝑆 ++ 𝑇 ) substr 〈 ( ♯ ‘ 𝑆 ) , ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) 〉 ) Fn ( 0 ..^ ( ♯ ‘ ( ( 𝑆 ++ 𝑇 ) substr 〈 ( ♯ ‘ 𝑆 ) , ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) 〉 ) ) ) ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( 𝑆 ++ 𝑇 ) substr 〈 ( ♯ ‘ 𝑆 ) , ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) 〉 ) Fn ( 0 ..^ ( ♯ ‘ ( ( 𝑆 ++ 𝑇 ) substr 〈 ( ♯ ‘ 𝑆 ) , ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) 〉 ) ) ) ) |
| 5 | lencl | ⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) | |
| 6 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 7 | 5 6 | eleqtrdi | ⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 9 | 5 | nn0zd | ⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ℤ ) |
| 10 | 9 | uzidd | ⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) ) |
| 11 | lencl | ⊢ ( 𝑇 ∈ Word 𝐵 → ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) | |
| 12 | uzaddcl | ⊢ ( ( ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) ∧ ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) ) | |
| 13 | 10 11 12 | syl2an | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) ) |
| 14 | elfzuzb | ⊢ ( ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ↔ ( ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑆 ) ) ) ) | |
| 15 | 8 13 14 | sylanbrc | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
| 16 | nn0addcl | ⊢ ( ( ( ♯ ‘ 𝑆 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑇 ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ℕ0 ) | |
| 17 | 5 11 16 | syl2an | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ℕ0 ) |
| 18 | 17 6 | eleqtrdi | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 19 | 17 | nn0zd | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ℤ ) |
| 20 | 19 | uzidd | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
| 21 | elfzuzb | ⊢ ( ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ( 0 ... ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ↔ ( ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) ) | |
| 22 | 18 20 21 | sylanbrc | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ( 0 ... ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
| 23 | ccatlen | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) = ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) | |
| 24 | 23 | oveq2d | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 0 ... ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) ) = ( 0 ... ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
| 25 | 22 24 | eleqtrrd | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) ) ) |
| 26 | swrdlen | ⊢ ( ( ( 𝑆 ++ 𝑇 ) ∈ Word 𝐵 ∧ ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ∧ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) ) ) → ( ♯ ‘ ( ( 𝑆 ++ 𝑇 ) substr 〈 ( ♯ ‘ 𝑆 ) , ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) 〉 ) ) = ( ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) − ( ♯ ‘ 𝑆 ) ) ) | |
| 27 | 1 15 25 26 | syl3anc | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ♯ ‘ ( ( 𝑆 ++ 𝑇 ) substr 〈 ( ♯ ‘ 𝑆 ) , ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) 〉 ) ) = ( ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) − ( ♯ ‘ 𝑆 ) ) ) |
| 28 | 5 | nn0cnd | ⊢ ( 𝑆 ∈ Word 𝐵 → ( ♯ ‘ 𝑆 ) ∈ ℂ ) |
| 29 | 11 | nn0cnd | ⊢ ( 𝑇 ∈ Word 𝐵 → ( ♯ ‘ 𝑇 ) ∈ ℂ ) |
| 30 | pncan2 | ⊢ ( ( ( ♯ ‘ 𝑆 ) ∈ ℂ ∧ ( ♯ ‘ 𝑇 ) ∈ ℂ ) → ( ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) − ( ♯ ‘ 𝑆 ) ) = ( ♯ ‘ 𝑇 ) ) | |
| 31 | 28 29 30 | syl2an | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) − ( ♯ ‘ 𝑆 ) ) = ( ♯ ‘ 𝑇 ) ) |
| 32 | 27 31 | eqtrd | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ♯ ‘ ( ( 𝑆 ++ 𝑇 ) substr 〈 ( ♯ ‘ 𝑆 ) , ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) 〉 ) ) = ( ♯ ‘ 𝑇 ) ) |
| 33 | 32 | oveq2d | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 0 ..^ ( ♯ ‘ ( ( 𝑆 ++ 𝑇 ) substr 〈 ( ♯ ‘ 𝑆 ) , ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) 〉 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
| 34 | 33 | fneq2d | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( ( 𝑆 ++ 𝑇 ) substr 〈 ( ♯ ‘ 𝑆 ) , ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) 〉 ) Fn ( 0 ..^ ( ♯ ‘ ( ( 𝑆 ++ 𝑇 ) substr 〈 ( ♯ ‘ 𝑆 ) , ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) 〉 ) ) ) ↔ ( ( 𝑆 ++ 𝑇 ) substr 〈 ( ♯ ‘ 𝑆 ) , ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) 〉 ) Fn ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) ) |
| 35 | 4 34 | mpbid | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( 𝑆 ++ 𝑇 ) substr 〈 ( ♯ ‘ 𝑆 ) , ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) 〉 ) Fn ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
| 36 | wrdfn | ⊢ ( 𝑇 ∈ Word 𝐵 → 𝑇 Fn ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) | |
| 37 | 36 | adantl | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → 𝑇 Fn ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
| 38 | 1 15 25 | 3jca | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( 𝑆 ++ 𝑇 ) ∈ Word 𝐵 ∧ ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ∧ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) ) ) ) |
| 39 | 31 | oveq2d | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 0 ..^ ( ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) − ( ♯ ‘ 𝑆 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) |
| 40 | 39 | eleq2d | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( 𝑘 ∈ ( 0 ..^ ( ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) − ( ♯ ‘ 𝑆 ) ) ) ↔ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) ) |
| 41 | 40 | biimpar | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → 𝑘 ∈ ( 0 ..^ ( ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) − ( ♯ ‘ 𝑆 ) ) ) ) |
| 42 | swrdfv | ⊢ ( ( ( ( 𝑆 ++ 𝑇 ) ∈ Word 𝐵 ∧ ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ∧ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ∈ ( 0 ... ( ♯ ‘ ( 𝑆 ++ 𝑇 ) ) ) ) ∧ 𝑘 ∈ ( 0 ..^ ( ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) − ( ♯ ‘ 𝑆 ) ) ) ) → ( ( ( 𝑆 ++ 𝑇 ) substr 〈 ( ♯ ‘ 𝑆 ) , ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) 〉 ) ‘ 𝑘 ) = ( ( 𝑆 ++ 𝑇 ) ‘ ( 𝑘 + ( ♯ ‘ 𝑆 ) ) ) ) | |
| 43 | 38 41 42 | syl2an2r | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( ( 𝑆 ++ 𝑇 ) substr 〈 ( ♯ ‘ 𝑆 ) , ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) 〉 ) ‘ 𝑘 ) = ( ( 𝑆 ++ 𝑇 ) ‘ ( 𝑘 + ( ♯ ‘ 𝑆 ) ) ) ) |
| 44 | ccatval3 | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ ( 𝑘 + ( ♯ ‘ 𝑆 ) ) ) = ( 𝑇 ‘ 𝑘 ) ) | |
| 45 | 44 | 3expa | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( 𝑆 ++ 𝑇 ) ‘ ( 𝑘 + ( ♯ ‘ 𝑆 ) ) ) = ( 𝑇 ‘ 𝑘 ) ) |
| 46 | 43 45 | eqtrd | ⊢ ( ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑇 ) ) ) → ( ( ( 𝑆 ++ 𝑇 ) substr 〈 ( ♯ ‘ 𝑆 ) , ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) 〉 ) ‘ 𝑘 ) = ( 𝑇 ‘ 𝑘 ) ) |
| 47 | 35 37 46 | eqfnfvd | ⊢ ( ( 𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ) → ( ( 𝑆 ++ 𝑇 ) substr 〈 ( ♯ ‘ 𝑆 ) , ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) 〉 ) = 𝑇 ) |