This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Joining two adjacent subwords makes a longer subword. (Contributed by Stefan O'Rear, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatswrd | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) = ( S substr <. X , Z >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swrdcl | |- ( S e. Word A -> ( S substr <. X , Y >. ) e. Word A ) |
|
| 2 | 1 | adantr | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( S substr <. X , Y >. ) e. Word A ) |
| 3 | swrdcl | |- ( S e. Word A -> ( S substr <. Y , Z >. ) e. Word A ) |
|
| 4 | 3 | adantr | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( S substr <. Y , Z >. ) e. Word A ) |
| 5 | ccatcl | |- ( ( ( S substr <. X , Y >. ) e. Word A /\ ( S substr <. Y , Z >. ) e. Word A ) -> ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) e. Word A ) |
|
| 6 | 2 4 5 | syl2anc | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) e. Word A ) |
| 7 | wrdfn | |- ( ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) e. Word A -> ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) Fn ( 0 ..^ ( # ` ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ) ) ) |
|
| 8 | 6 7 | syl | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) Fn ( 0 ..^ ( # ` ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ) ) ) |
| 9 | ccatlen | |- ( ( ( S substr <. X , Y >. ) e. Word A /\ ( S substr <. Y , Z >. ) e. Word A ) -> ( # ` ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ) = ( ( # ` ( S substr <. X , Y >. ) ) + ( # ` ( S substr <. Y , Z >. ) ) ) ) |
|
| 10 | 2 4 9 | syl2anc | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( # ` ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ) = ( ( # ` ( S substr <. X , Y >. ) ) + ( # ` ( S substr <. Y , Z >. ) ) ) ) |
| 11 | simpl | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> S e. Word A ) |
|
| 12 | simpr1 | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> X e. ( 0 ... Y ) ) |
|
| 13 | simpr2 | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> Y e. ( 0 ... Z ) ) |
|
| 14 | simpr3 | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> Z e. ( 0 ... ( # ` S ) ) ) |
|
| 15 | fzass4 | |- ( ( Y e. ( 0 ... ( # ` S ) ) /\ Z e. ( Y ... ( # ` S ) ) ) <-> ( Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) |
|
| 16 | 15 | biimpri | |- ( ( Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) -> ( Y e. ( 0 ... ( # ` S ) ) /\ Z e. ( Y ... ( # ` S ) ) ) ) |
| 17 | 16 | simpld | |- ( ( Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) -> Y e. ( 0 ... ( # ` S ) ) ) |
| 18 | 13 14 17 | syl2anc | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> Y e. ( 0 ... ( # ` S ) ) ) |
| 19 | swrdlen | |- ( ( S e. Word A /\ X e. ( 0 ... Y ) /\ Y e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( S substr <. X , Y >. ) ) = ( Y - X ) ) |
|
| 20 | 11 12 18 19 | syl3anc | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( # ` ( S substr <. X , Y >. ) ) = ( Y - X ) ) |
| 21 | swrdlen | |- ( ( S e. Word A /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( S substr <. Y , Z >. ) ) = ( Z - Y ) ) |
|
| 22 | 21 | 3adant3r1 | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( # ` ( S substr <. Y , Z >. ) ) = ( Z - Y ) ) |
| 23 | 20 22 | oveq12d | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( # ` ( S substr <. X , Y >. ) ) + ( # ` ( S substr <. Y , Z >. ) ) ) = ( ( Y - X ) + ( Z - Y ) ) ) |
| 24 | 13 | elfzelzd | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> Y e. ZZ ) |
| 25 | 24 | zcnd | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> Y e. CC ) |
| 26 | 12 | elfzelzd | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> X e. ZZ ) |
| 27 | 26 | zcnd | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> X e. CC ) |
| 28 | 14 | elfzelzd | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> Z e. ZZ ) |
| 29 | 28 | zcnd | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> Z e. CC ) |
| 30 | 25 27 29 | npncan3d | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( Y - X ) + ( Z - Y ) ) = ( Z - X ) ) |
| 31 | 10 23 30 | 3eqtrd | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( # ` ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ) = ( Z - X ) ) |
| 32 | 31 | oveq2d | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( 0 ..^ ( # ` ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ) ) = ( 0 ..^ ( Z - X ) ) ) |
| 33 | 32 | fneq2d | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) Fn ( 0 ..^ ( # ` ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ) ) <-> ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) Fn ( 0 ..^ ( Z - X ) ) ) ) |
| 34 | 8 33 | mpbid | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) Fn ( 0 ..^ ( Z - X ) ) ) |
| 35 | swrdcl | |- ( S e. Word A -> ( S substr <. X , Z >. ) e. Word A ) |
|
| 36 | 35 | adantr | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( S substr <. X , Z >. ) e. Word A ) |
| 37 | wrdfn | |- ( ( S substr <. X , Z >. ) e. Word A -> ( S substr <. X , Z >. ) Fn ( 0 ..^ ( # ` ( S substr <. X , Z >. ) ) ) ) |
|
| 38 | 36 37 | syl | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( S substr <. X , Z >. ) Fn ( 0 ..^ ( # ` ( S substr <. X , Z >. ) ) ) ) |
| 39 | fzass4 | |- ( ( X e. ( 0 ... Z ) /\ Y e. ( X ... Z ) ) <-> ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) ) ) |
|
| 40 | 39 | biimpri | |- ( ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) ) -> ( X e. ( 0 ... Z ) /\ Y e. ( X ... Z ) ) ) |
| 41 | 40 | simpld | |- ( ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) ) -> X e. ( 0 ... Z ) ) |
| 42 | 12 13 41 | syl2anc | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> X e. ( 0 ... Z ) ) |
| 43 | swrdlen | |- ( ( S e. Word A /\ X e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( S substr <. X , Z >. ) ) = ( Z - X ) ) |
|
| 44 | 11 42 14 43 | syl3anc | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( # ` ( S substr <. X , Z >. ) ) = ( Z - X ) ) |
| 45 | 44 | oveq2d | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( 0 ..^ ( # ` ( S substr <. X , Z >. ) ) ) = ( 0 ..^ ( Z - X ) ) ) |
| 46 | 45 | fneq2d | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( S substr <. X , Z >. ) Fn ( 0 ..^ ( # ` ( S substr <. X , Z >. ) ) ) <-> ( S substr <. X , Z >. ) Fn ( 0 ..^ ( Z - X ) ) ) ) |
| 47 | 38 46 | mpbid | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( S substr <. X , Z >. ) Fn ( 0 ..^ ( Z - X ) ) ) |
| 48 | 24 26 | zsubcld | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( Y - X ) e. ZZ ) |
| 49 | 48 | anim1ci | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Z - X ) ) ) -> ( x e. ( 0 ..^ ( Z - X ) ) /\ ( Y - X ) e. ZZ ) ) |
| 50 | fzospliti | |- ( ( x e. ( 0 ..^ ( Z - X ) ) /\ ( Y - X ) e. ZZ ) -> ( x e. ( 0 ..^ ( Y - X ) ) \/ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) ) |
|
| 51 | 49 50 | syl | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Z - X ) ) ) -> ( x e. ( 0 ..^ ( Y - X ) ) \/ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) ) |
| 52 | 1 | ad2antrr | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Y - X ) ) ) -> ( S substr <. X , Y >. ) e. Word A ) |
| 53 | 3 | ad2antrr | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Y - X ) ) ) -> ( S substr <. Y , Z >. ) e. Word A ) |
| 54 | 20 | oveq2d | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( 0 ..^ ( # ` ( S substr <. X , Y >. ) ) ) = ( 0 ..^ ( Y - X ) ) ) |
| 55 | 54 | eleq2d | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( x e. ( 0 ..^ ( # ` ( S substr <. X , Y >. ) ) ) <-> x e. ( 0 ..^ ( Y - X ) ) ) ) |
| 56 | 55 | biimpar | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Y - X ) ) ) -> x e. ( 0 ..^ ( # ` ( S substr <. X , Y >. ) ) ) ) |
| 57 | ccatval1 | |- ( ( ( S substr <. X , Y >. ) e. Word A /\ ( S substr <. Y , Z >. ) e. Word A /\ x e. ( 0 ..^ ( # ` ( S substr <. X , Y >. ) ) ) ) -> ( ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ` x ) = ( ( S substr <. X , Y >. ) ` x ) ) |
|
| 58 | 52 53 56 57 | syl3anc | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Y - X ) ) ) -> ( ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ` x ) = ( ( S substr <. X , Y >. ) ` x ) ) |
| 59 | simpll | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Y - X ) ) ) -> S e. Word A ) |
|
| 60 | simplr1 | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Y - X ) ) ) -> X e. ( 0 ... Y ) ) |
|
| 61 | 18 | adantr | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Y - X ) ) ) -> Y e. ( 0 ... ( # ` S ) ) ) |
| 62 | simpr | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Y - X ) ) ) -> x e. ( 0 ..^ ( Y - X ) ) ) |
|
| 63 | swrdfv | |- ( ( ( S e. Word A /\ X e. ( 0 ... Y ) /\ Y e. ( 0 ... ( # ` S ) ) ) /\ x e. ( 0 ..^ ( Y - X ) ) ) -> ( ( S substr <. X , Y >. ) ` x ) = ( S ` ( x + X ) ) ) |
|
| 64 | 59 60 61 62 63 | syl31anc | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Y - X ) ) ) -> ( ( S substr <. X , Y >. ) ` x ) = ( S ` ( x + X ) ) ) |
| 65 | 58 64 | eqtrd | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Y - X ) ) ) -> ( ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ` x ) = ( S ` ( x + X ) ) ) |
| 66 | 1 | ad2antrr | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( S substr <. X , Y >. ) e. Word A ) |
| 67 | 3 | ad2antrr | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( S substr <. Y , Z >. ) e. Word A ) |
| 68 | 23 30 | eqtrd | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( # ` ( S substr <. X , Y >. ) ) + ( # ` ( S substr <. Y , Z >. ) ) ) = ( Z - X ) ) |
| 69 | 20 68 | oveq12d | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( # ` ( S substr <. X , Y >. ) ) ..^ ( ( # ` ( S substr <. X , Y >. ) ) + ( # ` ( S substr <. Y , Z >. ) ) ) ) = ( ( Y - X ) ..^ ( Z - X ) ) ) |
| 70 | 69 | eleq2d | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( x e. ( ( # ` ( S substr <. X , Y >. ) ) ..^ ( ( # ` ( S substr <. X , Y >. ) ) + ( # ` ( S substr <. Y , Z >. ) ) ) ) <-> x e. ( ( Y - X ) ..^ ( Z - X ) ) ) ) |
| 71 | 70 | biimpar | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> x e. ( ( # ` ( S substr <. X , Y >. ) ) ..^ ( ( # ` ( S substr <. X , Y >. ) ) + ( # ` ( S substr <. Y , Z >. ) ) ) ) ) |
| 72 | ccatval2 | |- ( ( ( S substr <. X , Y >. ) e. Word A /\ ( S substr <. Y , Z >. ) e. Word A /\ x e. ( ( # ` ( S substr <. X , Y >. ) ) ..^ ( ( # ` ( S substr <. X , Y >. ) ) + ( # ` ( S substr <. Y , Z >. ) ) ) ) ) -> ( ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ` x ) = ( ( S substr <. Y , Z >. ) ` ( x - ( # ` ( S substr <. X , Y >. ) ) ) ) ) |
|
| 73 | 66 67 71 72 | syl3anc | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ` x ) = ( ( S substr <. Y , Z >. ) ` ( x - ( # ` ( S substr <. X , Y >. ) ) ) ) ) |
| 74 | simpll | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> S e. Word A ) |
|
| 75 | simplr2 | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> Y e. ( 0 ... Z ) ) |
|
| 76 | simplr3 | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> Z e. ( 0 ... ( # ` S ) ) ) |
|
| 77 | 20 | oveq2d | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( x - ( # ` ( S substr <. X , Y >. ) ) ) = ( x - ( Y - X ) ) ) |
| 78 | 77 | adantr | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( x - ( # ` ( S substr <. X , Y >. ) ) ) = ( x - ( Y - X ) ) ) |
| 79 | 30 | oveq2d | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( Y - X ) ..^ ( ( Y - X ) + ( Z - Y ) ) ) = ( ( Y - X ) ..^ ( Z - X ) ) ) |
| 80 | 79 | eleq2d | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( x e. ( ( Y - X ) ..^ ( ( Y - X ) + ( Z - Y ) ) ) <-> x e. ( ( Y - X ) ..^ ( Z - X ) ) ) ) |
| 81 | 80 | biimpar | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> x e. ( ( Y - X ) ..^ ( ( Y - X ) + ( Z - Y ) ) ) ) |
| 82 | 28 24 | zsubcld | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( Z - Y ) e. ZZ ) |
| 83 | 82 | adantr | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( Z - Y ) e. ZZ ) |
| 84 | fzosubel3 | |- ( ( x e. ( ( Y - X ) ..^ ( ( Y - X ) + ( Z - Y ) ) ) /\ ( Z - Y ) e. ZZ ) -> ( x - ( Y - X ) ) e. ( 0 ..^ ( Z - Y ) ) ) |
|
| 85 | 81 83 84 | syl2anc | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( x - ( Y - X ) ) e. ( 0 ..^ ( Z - Y ) ) ) |
| 86 | 78 85 | eqeltrd | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( x - ( # ` ( S substr <. X , Y >. ) ) ) e. ( 0 ..^ ( Z - Y ) ) ) |
| 87 | swrdfv | |- ( ( ( S e. Word A /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) /\ ( x - ( # ` ( S substr <. X , Y >. ) ) ) e. ( 0 ..^ ( Z - Y ) ) ) -> ( ( S substr <. Y , Z >. ) ` ( x - ( # ` ( S substr <. X , Y >. ) ) ) ) = ( S ` ( ( x - ( # ` ( S substr <. X , Y >. ) ) ) + Y ) ) ) |
|
| 88 | 74 75 76 86 87 | syl31anc | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( ( S substr <. Y , Z >. ) ` ( x - ( # ` ( S substr <. X , Y >. ) ) ) ) = ( S ` ( ( x - ( # ` ( S substr <. X , Y >. ) ) ) + Y ) ) ) |
| 89 | 77 | oveq1d | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( x - ( # ` ( S substr <. X , Y >. ) ) ) + Y ) = ( ( x - ( Y - X ) ) + Y ) ) |
| 90 | 89 | adantr | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( ( x - ( # ` ( S substr <. X , Y >. ) ) ) + Y ) = ( ( x - ( Y - X ) ) + Y ) ) |
| 91 | elfzoelz | |- ( x e. ( ( Y - X ) ..^ ( Z - X ) ) -> x e. ZZ ) |
|
| 92 | 91 | zcnd | |- ( x e. ( ( Y - X ) ..^ ( Z - X ) ) -> x e. CC ) |
| 93 | 92 | adantl | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> x e. CC ) |
| 94 | 25 27 | subcld | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( Y - X ) e. CC ) |
| 95 | 94 | adantr | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( Y - X ) e. CC ) |
| 96 | 25 | adantr | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> Y e. CC ) |
| 97 | 93 95 96 | subadd23d | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( ( x - ( Y - X ) ) + Y ) = ( x + ( Y - ( Y - X ) ) ) ) |
| 98 | 25 27 | nncand | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( Y - ( Y - X ) ) = X ) |
| 99 | 98 | oveq2d | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( x + ( Y - ( Y - X ) ) ) = ( x + X ) ) |
| 100 | 99 | adantr | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( x + ( Y - ( Y - X ) ) ) = ( x + X ) ) |
| 101 | 90 97 100 | 3eqtrd | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( ( x - ( # ` ( S substr <. X , Y >. ) ) ) + Y ) = ( x + X ) ) |
| 102 | 101 | fveq2d | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( S ` ( ( x - ( # ` ( S substr <. X , Y >. ) ) ) + Y ) ) = ( S ` ( x + X ) ) ) |
| 103 | 73 88 102 | 3eqtrd | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) -> ( ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ` x ) = ( S ` ( x + X ) ) ) |
| 104 | 65 103 | jaodan | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ ( x e. ( 0 ..^ ( Y - X ) ) \/ x e. ( ( Y - X ) ..^ ( Z - X ) ) ) ) -> ( ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ` x ) = ( S ` ( x + X ) ) ) |
| 105 | 51 104 | syldan | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Z - X ) ) ) -> ( ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ` x ) = ( S ` ( x + X ) ) ) |
| 106 | simpll | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Z - X ) ) ) -> S e. Word A ) |
|
| 107 | 42 | adantr | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Z - X ) ) ) -> X e. ( 0 ... Z ) ) |
| 108 | simplr3 | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Z - X ) ) ) -> Z e. ( 0 ... ( # ` S ) ) ) |
|
| 109 | simpr | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Z - X ) ) ) -> x e. ( 0 ..^ ( Z - X ) ) ) |
|
| 110 | swrdfv | |- ( ( ( S e. Word A /\ X e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) /\ x e. ( 0 ..^ ( Z - X ) ) ) -> ( ( S substr <. X , Z >. ) ` x ) = ( S ` ( x + X ) ) ) |
|
| 111 | 106 107 108 109 110 | syl31anc | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Z - X ) ) ) -> ( ( S substr <. X , Z >. ) ` x ) = ( S ` ( x + X ) ) ) |
| 112 | 105 111 | eqtr4d | |- ( ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) /\ x e. ( 0 ..^ ( Z - X ) ) ) -> ( ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) ` x ) = ( ( S substr <. X , Z >. ) ` x ) ) |
| 113 | 34 47 112 | eqfnfvd | |- ( ( S e. Word A /\ ( X e. ( 0 ... Y ) /\ Y e. ( 0 ... Z ) /\ Z e. ( 0 ... ( # ` S ) ) ) ) -> ( ( S substr <. X , Y >. ) ++ ( S substr <. Y , Z >. ) ) = ( S substr <. X , Z >. ) ) |