This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for caurcvgr . (Contributed by Mario Carneiro, 15-Feb-2014) (Revised by AV, 12-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caurcvgr.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| caurcvgr.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) | ||
| caurcvgr.3 | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) | ||
| caurcvgr.4 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) | ||
| caucvgrlem.4 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| Assertion | caucvgrlem | ⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝐴 ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 𝑅 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caurcvgr.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 2 | caurcvgr.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) | |
| 3 | caurcvgr.3 | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) | |
| 4 | caurcvgr.4 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) | |
| 5 | caucvgrlem.4 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 6 | reex | ⊢ ℝ ∈ V | |
| 7 | 6 | ssex | ⊢ ( 𝐴 ⊆ ℝ → 𝐴 ∈ V ) |
| 8 | 1 7 | syl | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 9 | 6 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 10 | fex2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ V ∧ ℝ ∈ V ) → 𝐹 ∈ V ) | |
| 11 | 2 8 9 10 | syl3anc | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 12 | limsupcl | ⊢ ( 𝐹 ∈ V → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
| 15 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → 𝐹 : 𝐴 ⟶ ℝ ) |
| 16 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → 𝑗 ∈ 𝐴 ) | |
| 17 | 15 16 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 18 | 5 | rpred | ⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 19 | 18 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → 𝑅 ∈ ℝ ) |
| 20 | 17 19 | readdcld | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ∈ ℝ ) |
| 21 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 22 | 21 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → -∞ ∈ ℝ* ) |
| 23 | 17 19 | resubcld | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ∈ ℝ ) |
| 24 | 23 | rexrd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ∈ ℝ* ) |
| 25 | 23 | mnfltd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → -∞ < ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ) |
| 26 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → 𝐴 ⊆ ℝ ) |
| 27 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 28 | fss | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ ℝ ⊆ ℝ* ) → 𝐹 : 𝐴 ⟶ ℝ* ) | |
| 29 | 2 27 28 | sylancl | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ* ) |
| 30 | 29 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → 𝐹 : 𝐴 ⟶ ℝ* ) |
| 31 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
| 32 | 26 16 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → 𝑗 ∈ ℝ ) |
| 33 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) | |
| 34 | breq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝑗 ≤ 𝑘 ↔ 𝑗 ≤ 𝑚 ) ) | |
| 35 | 34 | imbrov2fvoveq | ⊢ ( 𝑘 = 𝑚 → ( ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ↔ ( 𝑗 ≤ 𝑚 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) |
| 36 | 35 | cbvralvw | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ↔ ∀ 𝑚 ∈ 𝐴 ( 𝑗 ≤ 𝑚 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) |
| 37 | 33 36 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ∀ 𝑚 ∈ 𝐴 ( 𝑗 ≤ 𝑚 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) |
| 38 | 15 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℝ ) |
| 39 | 17 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 40 | 38 39 | resubcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ) |
| 41 | 40 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ∈ ℂ ) |
| 42 | 41 | abscld | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 43 | 19 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → 𝑅 ∈ ℝ ) |
| 44 | ltle | ⊢ ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) ≤ 𝑅 ) ) | |
| 45 | 42 43 44 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) ≤ 𝑅 ) ) |
| 46 | 38 39 43 | absdifled | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) ≤ 𝑅 ↔ ( ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑚 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) ) ) |
| 47 | 45 46 | sylibd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 → ( ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑚 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) ) ) |
| 48 | simpl | ⊢ ( ( ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑚 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ) | |
| 49 | 47 48 | syl6 | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ) ) |
| 50 | 49 | imim2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑗 ≤ 𝑚 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) → ( 𝑗 ≤ 𝑚 → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 51 | 50 | ralimdva | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ( ∀ 𝑚 ∈ 𝐴 ( 𝑗 ≤ 𝑚 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) → ∀ 𝑚 ∈ 𝐴 ( 𝑗 ≤ 𝑚 → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 52 | 37 51 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ∀ 𝑚 ∈ 𝐴 ( 𝑗 ≤ 𝑚 → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ) ) |
| 53 | breq1 | ⊢ ( 𝑛 = 𝑗 → ( 𝑛 ≤ 𝑚 ↔ 𝑗 ≤ 𝑚 ) ) | |
| 54 | 53 | rspceaimv | ⊢ ( ( 𝑗 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝐴 ( 𝑗 ≤ 𝑚 → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ) ) → ∃ 𝑛 ∈ ℝ ∀ 𝑚 ∈ 𝐴 ( 𝑛 ≤ 𝑚 → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ) ) |
| 55 | 32 52 54 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ∃ 𝑛 ∈ ℝ ∀ 𝑚 ∈ 𝐴 ( 𝑛 ≤ 𝑚 → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ) ) |
| 56 | 26 30 24 31 55 | limsupbnd2 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( lim sup ‘ 𝐹 ) ) |
| 57 | 22 24 14 25 56 | xrltletrd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → -∞ < ( lim sup ‘ 𝐹 ) ) |
| 58 | 20 | rexrd | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ∈ ℝ* ) |
| 59 | 42 | adantrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 60 | 19 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → 𝑅 ∈ ℝ ) |
| 61 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → 𝑗 ≤ 𝑚 ) | |
| 62 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) | |
| 63 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → 𝑚 ∈ 𝐴 ) | |
| 64 | 35 62 63 | rspcdva | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( 𝑗 ≤ 𝑚 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) |
| 65 | 61 64 | mpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) |
| 66 | 59 60 65 | ltled | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) ≤ 𝑅 ) |
| 67 | 38 | adantrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( 𝐹 ‘ 𝑚 ) ∈ ℝ ) |
| 68 | 17 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ ) |
| 69 | 67 68 60 | absdifled | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( 𝐹 ‘ 𝑗 ) ) ) ≤ 𝑅 ↔ ( ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑚 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) ) ) |
| 70 | 66 69 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ∧ ( 𝐹 ‘ 𝑚 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) ) |
| 71 | 70 | simprd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( 𝐹 ‘ 𝑚 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) |
| 72 | 71 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ( 𝑗 ≤ 𝑚 → ( 𝐹 ‘ 𝑚 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) ) |
| 73 | 72 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ∀ 𝑚 ∈ 𝐴 ( 𝑗 ≤ 𝑚 → ( 𝐹 ‘ 𝑚 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) ) |
| 74 | 53 | rspceaimv | ⊢ ( ( 𝑗 ∈ ℝ ∧ ∀ 𝑚 ∈ 𝐴 ( 𝑗 ≤ 𝑚 → ( 𝐹 ‘ 𝑚 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) ) → ∃ 𝑛 ∈ ℝ ∀ 𝑚 ∈ 𝐴 ( 𝑛 ≤ 𝑚 → ( 𝐹 ‘ 𝑚 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) ) |
| 75 | 32 73 74 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ∃ 𝑛 ∈ ℝ ∀ 𝑚 ∈ 𝐴 ( 𝑛 ≤ 𝑚 → ( 𝐹 ‘ 𝑚 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) ) |
| 76 | 26 30 58 75 | limsupbnd1 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ( lim sup ‘ 𝐹 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) |
| 77 | xrre | ⊢ ( ( ( ( lim sup ‘ 𝐹 ) ∈ ℝ* ∧ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ∈ ℝ ) ∧ ( -∞ < ( lim sup ‘ 𝐹 ) ∧ ( lim sup ‘ 𝐹 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ ) | |
| 78 | 14 20 57 76 77 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
| 79 | 78 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
| 80 | 67 79 | resubcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) − ( lim sup ‘ 𝐹 ) ) ∈ ℝ ) |
| 81 | 80 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) − ( lim sup ‘ 𝐹 ) ) ∈ ℂ ) |
| 82 | 81 | abscld | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( lim sup ‘ 𝐹 ) ) ) ∈ ℝ ) |
| 83 | 2re | ⊢ 2 ∈ ℝ | |
| 84 | remulcl | ⊢ ( ( 2 ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( 2 · 𝑅 ) ∈ ℝ ) | |
| 85 | 83 60 84 | sylancr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( 2 · 𝑅 ) ∈ ℝ ) |
| 86 | 3re | ⊢ 3 ∈ ℝ | |
| 87 | remulcl | ⊢ ( ( 3 ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( 3 · 𝑅 ) ∈ ℝ ) | |
| 88 | 86 60 87 | sylancr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( 3 · 𝑅 ) ∈ ℝ ) |
| 89 | 67 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
| 90 | 79 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( lim sup ‘ 𝐹 ) ∈ ℂ ) |
| 91 | 89 90 | abssubd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( lim sup ‘ 𝐹 ) ) ) = ( abs ‘ ( ( lim sup ‘ 𝐹 ) − ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 92 | 67 85 | resubcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) − ( 2 · 𝑅 ) ) ∈ ℝ ) |
| 93 | 23 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ∈ ℝ ) |
| 94 | 60 | recnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → 𝑅 ∈ ℂ ) |
| 95 | 94 | 2timesd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( 2 · 𝑅 ) = ( 𝑅 + 𝑅 ) ) |
| 96 | 95 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) − ( 2 · 𝑅 ) ) = ( ( 𝐹 ‘ 𝑚 ) − ( 𝑅 + 𝑅 ) ) ) |
| 97 | 89 94 94 | subsub4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( ( 𝐹 ‘ 𝑚 ) − 𝑅 ) − 𝑅 ) = ( ( 𝐹 ‘ 𝑚 ) − ( 𝑅 + 𝑅 ) ) ) |
| 98 | 96 97 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) − ( 2 · 𝑅 ) ) = ( ( ( 𝐹 ‘ 𝑚 ) − 𝑅 ) − 𝑅 ) ) |
| 99 | 67 60 | resubcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) − 𝑅 ) ∈ ℝ ) |
| 100 | 67 60 68 | lesubaddd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( ( 𝐹 ‘ 𝑚 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑗 ) ↔ ( 𝐹 ‘ 𝑚 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) ) |
| 101 | 71 100 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 102 | 99 68 60 101 | lesub1dd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( ( 𝐹 ‘ 𝑚 ) − 𝑅 ) − 𝑅 ) ≤ ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ) |
| 103 | 98 102 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) − ( 2 · 𝑅 ) ) ≤ ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ) |
| 104 | 56 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( lim sup ‘ 𝐹 ) ) |
| 105 | 92 93 79 103 104 | letrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) − ( 2 · 𝑅 ) ) ≤ ( lim sup ‘ 𝐹 ) ) |
| 106 | 20 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ∈ ℝ ) |
| 107 | 67 85 | readdcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) + ( 2 · 𝑅 ) ) ∈ ℝ ) |
| 108 | 76 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( lim sup ‘ 𝐹 ) ≤ ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ) |
| 109 | 67 60 | readdcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) + 𝑅 ) ∈ ℝ ) |
| 110 | 70 48 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ) |
| 111 | 68 60 67 | lesubaddd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( ( 𝐹 ‘ 𝑗 ) − 𝑅 ) ≤ ( 𝐹 ‘ 𝑚 ) ↔ ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝐹 ‘ 𝑚 ) + 𝑅 ) ) ) |
| 112 | 110 111 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝐹 ‘ 𝑚 ) + 𝑅 ) ) |
| 113 | 68 109 60 112 | leadd1dd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ≤ ( ( ( 𝐹 ‘ 𝑚 ) + 𝑅 ) + 𝑅 ) ) |
| 114 | 89 94 94 | addassd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( ( 𝐹 ‘ 𝑚 ) + 𝑅 ) + 𝑅 ) = ( ( 𝐹 ‘ 𝑚 ) + ( 𝑅 + 𝑅 ) ) ) |
| 115 | 95 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑚 ) + ( 2 · 𝑅 ) ) = ( ( 𝐹 ‘ 𝑚 ) + ( 𝑅 + 𝑅 ) ) ) |
| 116 | 114 115 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( ( 𝐹 ‘ 𝑚 ) + 𝑅 ) + 𝑅 ) = ( ( 𝐹 ‘ 𝑚 ) + ( 2 · 𝑅 ) ) ) |
| 117 | 113 116 | breqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( 𝐹 ‘ 𝑗 ) + 𝑅 ) ≤ ( ( 𝐹 ‘ 𝑚 ) + ( 2 · 𝑅 ) ) ) |
| 118 | 79 106 107 108 117 | letrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( lim sup ‘ 𝐹 ) ≤ ( ( 𝐹 ‘ 𝑚 ) + ( 2 · 𝑅 ) ) ) |
| 119 | 79 67 85 | absdifled | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( ( abs ‘ ( ( lim sup ‘ 𝐹 ) − ( 𝐹 ‘ 𝑚 ) ) ) ≤ ( 2 · 𝑅 ) ↔ ( ( ( 𝐹 ‘ 𝑚 ) − ( 2 · 𝑅 ) ) ≤ ( lim sup ‘ 𝐹 ) ∧ ( lim sup ‘ 𝐹 ) ≤ ( ( 𝐹 ‘ 𝑚 ) + ( 2 · 𝑅 ) ) ) ) ) |
| 120 | 105 118 119 | mpbir2and | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( abs ‘ ( ( lim sup ‘ 𝐹 ) − ( 𝐹 ‘ 𝑚 ) ) ) ≤ ( 2 · 𝑅 ) ) |
| 121 | 91 120 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( lim sup ‘ 𝐹 ) ) ) ≤ ( 2 · 𝑅 ) ) |
| 122 | 2lt3 | ⊢ 2 < 3 | |
| 123 | 83 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → 2 ∈ ℝ ) |
| 124 | 86 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → 3 ∈ ℝ ) |
| 125 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → 𝑅 ∈ ℝ+ ) |
| 126 | 125 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → 𝑅 ∈ ℝ+ ) |
| 127 | 123 124 126 | ltmul1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( 2 < 3 ↔ ( 2 · 𝑅 ) < ( 3 · 𝑅 ) ) ) |
| 128 | 122 127 | mpbii | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( 2 · 𝑅 ) < ( 3 · 𝑅 ) ) |
| 129 | 82 85 88 121 128 | lelttrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ ( 𝑚 ∈ 𝐴 ∧ 𝑗 ≤ 𝑚 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 𝑅 ) ) |
| 130 | 129 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) ∧ 𝑚 ∈ 𝐴 ) → ( 𝑗 ≤ 𝑚 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 𝑅 ) ) ) |
| 131 | 130 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ∀ 𝑚 ∈ 𝐴 ( 𝑗 ≤ 𝑚 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 𝑅 ) ) ) |
| 132 | 34 | imbrov2fvoveq | ⊢ ( 𝑘 = 𝑚 → ( ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 𝑅 ) ) ↔ ( 𝑗 ≤ 𝑚 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 𝑅 ) ) ) ) |
| 133 | 132 | cbvralvw | ⊢ ( ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 𝑅 ) ) ↔ ∀ 𝑚 ∈ 𝐴 ( 𝑗 ≤ 𝑚 → ( abs ‘ ( ( 𝐹 ‘ 𝑚 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 𝑅 ) ) ) |
| 134 | 131 133 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 𝑅 ) ) ) |
| 135 | 78 134 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) → ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 𝑅 ) ) ) ) |
| 136 | breq2 | ⊢ ( 𝑥 = 𝑅 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) | |
| 137 | 136 | imbi2d | ⊢ ( 𝑥 = 𝑅 → ( ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) |
| 138 | 137 | rexralbidv | ⊢ ( 𝑥 = 𝑅 → ( ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) ) |
| 139 | 138 4 5 | rspcdva | ⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑅 ) ) |
| 140 | 135 139 | reximddv | ⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝐴 ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 𝑅 ) ) ) ) |