This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a sequence is eventually greater than A , then the limsup is also greater than A . (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 12-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limsupbnd.1 | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) | |
| limsupbnd.2 | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ℝ* ) | ||
| limsupbnd.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | ||
| limsupbnd2.4 | ⊢ ( 𝜑 → sup ( 𝐵 , ℝ* , < ) = +∞ ) | ||
| limsupbnd2.5 | ⊢ ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ) | ||
| Assertion | limsupbnd2 | ⊢ ( 𝜑 → 𝐴 ≤ ( lim sup ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupbnd.1 | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) | |
| 2 | limsupbnd.2 | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ℝ* ) | |
| 3 | limsupbnd.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| 4 | limsupbnd2.4 | ⊢ ( 𝜑 → sup ( 𝐵 , ℝ* , < ) = +∞ ) | |
| 5 | limsupbnd2.5 | ⊢ ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ) | |
| 6 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 7 | 1 6 | sstrdi | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ* ) |
| 8 | supxrunb1 | ⊢ ( 𝐵 ⊆ ℝ* → ( ∀ 𝑛 ∈ ℝ ∃ 𝑗 ∈ 𝐵 𝑛 ≤ 𝑗 ↔ sup ( 𝐵 , ℝ* , < ) = +∞ ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → ( ∀ 𝑛 ∈ ℝ ∃ 𝑗 ∈ 𝐵 𝑛 ≤ 𝑗 ↔ sup ( 𝐵 , ℝ* , < ) = +∞ ) ) |
| 10 | 4 9 | mpbird | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℝ ∃ 𝑗 ∈ 𝐵 𝑛 ≤ 𝑗 ) |
| 11 | ifcl | ⊢ ( ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ∈ ℝ ) | |
| 12 | breq1 | ⊢ ( 𝑛 = if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) → ( 𝑛 ≤ 𝑗 ↔ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) ) | |
| 13 | 12 | rexbidv | ⊢ ( 𝑛 = if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) → ( ∃ 𝑗 ∈ 𝐵 𝑛 ≤ 𝑗 ↔ ∃ 𝑗 ∈ 𝐵 if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) ) |
| 14 | 13 | rspccva | ⊢ ( ( ∀ 𝑛 ∈ ℝ ∃ 𝑗 ∈ 𝐵 𝑛 ≤ 𝑗 ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ∈ ℝ ) → ∃ 𝑗 ∈ 𝐵 if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) |
| 15 | 10 11 14 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) → ∃ 𝑗 ∈ 𝐵 if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) |
| 16 | r19.29 | ⊢ ( ( ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ∧ ∃ 𝑗 ∈ 𝐵 if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) → ∃ 𝑗 ∈ 𝐵 ( ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) ) | |
| 17 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → 𝑘 ∈ ℝ ) | |
| 18 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) → 𝑚 ∈ ℝ ) | |
| 19 | 18 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → 𝑚 ∈ ℝ ) |
| 20 | max1 | ⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ ) → 𝑘 ≤ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ) | |
| 21 | 17 19 20 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → 𝑘 ≤ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ) |
| 22 | 19 17 11 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ∈ ℝ ) |
| 23 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) → 𝐵 ⊆ ℝ ) |
| 24 | 23 | sselda | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → 𝑗 ∈ ℝ ) |
| 25 | letr | ⊢ ( ( 𝑘 ∈ ℝ ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( ( 𝑘 ≤ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) → 𝑘 ≤ 𝑗 ) ) | |
| 26 | 17 22 24 25 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( 𝑘 ≤ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) → 𝑘 ≤ 𝑗 ) ) |
| 27 | 21 26 | mpand | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 → 𝑘 ≤ 𝑗 ) ) |
| 28 | 27 | imim1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) → ( if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 29 | 28 | impd | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 30 | max2 | ⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ ) → 𝑚 ≤ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ) | |
| 31 | 17 19 30 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → 𝑚 ≤ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ) |
| 32 | letr | ⊢ ( ( 𝑚 ∈ ℝ ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( ( 𝑚 ≤ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) → 𝑚 ≤ 𝑗 ) ) | |
| 33 | 19 22 24 32 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( 𝑚 ≤ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) → 𝑚 ≤ 𝑗 ) ) |
| 34 | 31 33 | mpand | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 → 𝑚 ≤ 𝑗 ) ) |
| 35 | 34 | adantld | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) → 𝑚 ≤ 𝑗 ) ) |
| 36 | eqid | ⊢ ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | |
| 37 | 36 | limsupgf | ⊢ ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) : ℝ ⟶ ℝ* |
| 38 | 37 | ffvelcdmi | ⊢ ( 𝑚 ∈ ℝ → ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ∈ ℝ* ) |
| 39 | 38 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ∈ ℝ* ) |
| 40 | 39 | xrleidd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) |
| 41 | 40 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) → ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) |
| 42 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) → 𝐹 : 𝐵 ⟶ ℝ* ) |
| 43 | 18 38 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) → ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ∈ ℝ* ) |
| 44 | 36 | limsupgle | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝑚 ∈ ℝ ∧ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ∈ ℝ* ) → ( ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ↔ ∀ 𝑗 ∈ 𝐵 ( 𝑚 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) ) |
| 45 | 23 42 18 43 44 | syl211anc | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) → ( ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ↔ ∀ 𝑗 ∈ 𝐵 ( 𝑚 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) ) |
| 46 | 41 45 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) → ∀ 𝑗 ∈ 𝐵 ( 𝑚 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
| 47 | 46 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( 𝑚 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
| 48 | 35 47 | syld | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) → ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
| 49 | 29 48 | jcad | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) → ( 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ∧ ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) ) |
| 50 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → 𝐴 ∈ ℝ* ) |
| 51 | 42 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
| 52 | 43 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ∈ ℝ* ) |
| 53 | xrletr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ∧ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ∈ ℝ* ) → ( ( 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ∧ ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) → 𝐴 ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) | |
| 54 | 50 51 52 53 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ∧ ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) → 𝐴 ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
| 55 | 49 54 | syld | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) → 𝐴 ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
| 56 | 55 | rexlimdva | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) → ( ∃ 𝑗 ∈ 𝐵 ( ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) → 𝐴 ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
| 57 | 16 56 | syl5 | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) → ( ( ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ∧ ∃ 𝑗 ∈ 𝐵 if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) → 𝐴 ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
| 58 | 15 57 | mpan2d | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) → ( ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) → 𝐴 ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
| 59 | 58 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) → ( ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) → 𝐴 ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
| 60 | 59 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → ( ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) → 𝐴 ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
| 61 | 60 | ralrimdva | ⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) → ∀ 𝑚 ∈ ℝ 𝐴 ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
| 62 | 5 61 | mpd | ⊢ ( 𝜑 → ∀ 𝑚 ∈ ℝ 𝐴 ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) |
| 63 | 36 | limsuple | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐴 ≤ ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑚 ∈ ℝ 𝐴 ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
| 64 | 1 2 3 63 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 ≤ ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑚 ∈ ℝ 𝐴 ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
| 65 | 62 64 | mpbird | ⊢ ( 𝜑 → 𝐴 ≤ ( lim sup ‘ 𝐹 ) ) |