This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cauchy sequence of real numbers converges to its limit supremum. The third hypothesis specifies that F is a Cauchy sequence. (Contributed by Mario Carneiro, 7-May-2016) (Revised by AV, 12-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caurcvgr.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| caurcvgr.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) | ||
| caurcvgr.3 | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) | ||
| caurcvgr.4 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) | ||
| Assertion | caurcvgr | ⊢ ( 𝜑 → 𝐹 ⇝𝑟 ( lim sup ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caurcvgr.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 2 | caurcvgr.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) | |
| 3 | caurcvgr.3 | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) | |
| 4 | caurcvgr.4 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) | |
| 5 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 6 | 5 | a1i | ⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
| 7 | 1 2 3 4 6 | caucvgrlem | ⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝐴 ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 1 ) ) ) ) |
| 8 | simpl | ⊢ ( ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 1 ) ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ ) | |
| 9 | 8 | rexlimivw | ⊢ ( ∃ 𝑗 ∈ 𝐴 ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · 1 ) ) ) → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
| 10 | 7 9 | syl | ⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ ) |
| 11 | 10 | recnd | ⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℂ ) |
| 12 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐴 ⊆ ℝ ) |
| 13 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐹 : 𝐴 ⟶ ℝ ) |
| 14 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
| 15 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 16 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ+ ) | |
| 17 | 3rp | ⊢ 3 ∈ ℝ+ | |
| 18 | rpdivcl | ⊢ ( ( 𝑦 ∈ ℝ+ ∧ 3 ∈ ℝ+ ) → ( 𝑦 / 3 ) ∈ ℝ+ ) | |
| 19 | 16 17 18 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 𝑦 / 3 ) ∈ ℝ+ ) |
| 20 | 12 13 14 15 19 | caucvgrlem | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝐴 ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · ( 𝑦 / 3 ) ) ) ) ) |
| 21 | simpr | ⊢ ( ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · ( 𝑦 / 3 ) ) ) ) → ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · ( 𝑦 / 3 ) ) ) ) | |
| 22 | 21 | reximi | ⊢ ( ∃ 𝑗 ∈ 𝐴 ( ( lim sup ‘ 𝐹 ) ∈ ℝ ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · ( 𝑦 / 3 ) ) ) ) → ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · ( 𝑦 / 3 ) ) ) ) |
| 23 | 20 22 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · ( 𝑦 / 3 ) ) ) ) |
| 24 | ssrexv | ⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · ( 𝑦 / 3 ) ) ) → ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · ( 𝑦 / 3 ) ) ) ) ) | |
| 25 | 12 23 24 | sylc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · ( 𝑦 / 3 ) ) ) ) |
| 26 | rpcn | ⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℂ ) | |
| 27 | 26 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℂ ) |
| 28 | 3cn | ⊢ 3 ∈ ℂ | |
| 29 | 28 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 3 ∈ ℂ ) |
| 30 | 3ne0 | ⊢ 3 ≠ 0 | |
| 31 | 30 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 3 ≠ 0 ) |
| 32 | 27 29 31 | divcan2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( 3 · ( 𝑦 / 3 ) ) = 𝑦 ) |
| 33 | 32 | breq2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · ( 𝑦 / 3 ) ) ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < 𝑦 ) ) |
| 34 | 33 | imbi2d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · ( 𝑦 / 3 ) ) ) ↔ ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < 𝑦 ) ) ) |
| 35 | 34 | rexralbidv | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < ( 3 · ( 𝑦 / 3 ) ) ) ↔ ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < 𝑦 ) ) ) |
| 36 | 25 35 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < 𝑦 ) ) |
| 37 | 36 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < 𝑦 ) ) |
| 38 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 39 | fss | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 40 | 2 38 39 | sylancl | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
| 41 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 42 | 40 1 41 | rlim | ⊢ ( 𝜑 → ( 𝐹 ⇝𝑟 ( lim sup ‘ 𝐹 ) ↔ ( ( lim sup ‘ 𝐹 ) ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑗 ∈ ℝ ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( lim sup ‘ 𝐹 ) ) ) < 𝑦 ) ) ) ) |
| 43 | 11 37 42 | mpbir2and | ⊢ ( 𝜑 → 𝐹 ⇝𝑟 ( lim sup ‘ 𝐹 ) ) |