This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the superior limit. (Contributed by NM, 26-Oct-2005) (Revised by AV, 12-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limsupcl | ⊢ ( 𝐹 ∈ 𝑉 → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐹 ∈ 𝑉 → 𝐹 ∈ V ) | |
| 2 | df-limsup | ⊢ lim sup = ( 𝑓 ∈ V ↦ inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) | |
| 3 | eqid | ⊢ ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | |
| 4 | inss2 | ⊢ ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* | |
| 5 | supxrcl | ⊢ ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* → sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* ) | |
| 6 | 4 5 | mp1i | ⊢ ( 𝑘 ∈ ℝ → sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* ) |
| 7 | 3 6 | fmpti | ⊢ ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) : ℝ ⟶ ℝ* |
| 8 | frn | ⊢ ( ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) : ℝ ⟶ ℝ* → ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ⊆ ℝ* ) | |
| 9 | 7 8 | ax-mp | ⊢ ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ⊆ ℝ* |
| 10 | infxrcl | ⊢ ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ⊆ ℝ* → inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ∈ ℝ* ) | |
| 11 | 9 10 | mp1i | ⊢ ( 𝑓 ∈ V → inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ∈ ℝ* ) |
| 12 | 2 11 | fmpti | ⊢ lim sup : V ⟶ ℝ* |
| 13 | 12 | ffvelcdmi | ⊢ ( 𝐹 ∈ V → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
| 14 | 1 13 | syl | ⊢ ( 𝐹 ∈ 𝑉 → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |