This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given any transfinite cardinal number A , there is exactly one aleph that is equal to it. Here we compute that alephexplicitly. (Contributed by NM, 9-Nov-2003) (Revised by Mario Carneiro, 2-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cardaleph | ⊢ ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) → 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardon | ⊢ ( card ‘ 𝐴 ) ∈ On | |
| 2 | eleq1 | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ( card ‘ 𝐴 ) ∈ On ↔ 𝐴 ∈ On ) ) | |
| 3 | 1 2 | mpbii | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 → 𝐴 ∈ On ) |
| 4 | alephle | ⊢ ( 𝐴 ∈ On → 𝐴 ⊆ ( ℵ ‘ 𝐴 ) ) | |
| 5 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ 𝐴 ) ) | |
| 6 | 5 | sseq2d | ⊢ ( 𝑥 = 𝐴 → ( 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ↔ 𝐴 ⊆ ( ℵ ‘ 𝐴 ) ) ) |
| 7 | 6 | rspcev | ⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ⊆ ( ℵ ‘ 𝐴 ) ) → ∃ 𝑥 ∈ On 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ) |
| 8 | 4 7 | mpdan | ⊢ ( 𝐴 ∈ On → ∃ 𝑥 ∈ On 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ) |
| 9 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 10 | nfcv | ⊢ Ⅎ 𝑥 ℵ | |
| 11 | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } | |
| 12 | 11 | nfint | ⊢ Ⅎ 𝑥 ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } |
| 13 | 10 12 | nffv | ⊢ Ⅎ 𝑥 ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) |
| 14 | 9 13 | nfss | ⊢ Ⅎ 𝑥 𝐴 ⊆ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) |
| 15 | fveq2 | ⊢ ( 𝑥 = ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) | |
| 16 | 15 | sseq2d | ⊢ ( 𝑥 = ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } → ( 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ↔ 𝐴 ⊆ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 17 | 14 16 | onminsb | ⊢ ( ∃ 𝑥 ∈ On 𝐴 ⊆ ( ℵ ‘ 𝑥 ) → 𝐴 ⊆ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) |
| 18 | 3 8 17 | 3syl | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 → 𝐴 ⊆ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) |
| 19 | 18 | a1i | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ → ( ( card ‘ 𝐴 ) = 𝐴 → 𝐴 ⊆ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 20 | fveq2 | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ → ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) = ( ℵ ‘ ∅ ) ) | |
| 21 | aleph0 | ⊢ ( ℵ ‘ ∅ ) = ω | |
| 22 | 20 21 | eqtrdi | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ → ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) = ω ) |
| 23 | 22 | sseq1d | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ → ( ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ⊆ 𝐴 ↔ ω ⊆ 𝐴 ) ) |
| 24 | 23 | biimprd | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ → ( ω ⊆ 𝐴 → ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ⊆ 𝐴 ) ) |
| 25 | 19 24 | anim12d | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ → ( ( ( card ‘ 𝐴 ) = 𝐴 ∧ ω ⊆ 𝐴 ) → ( 𝐴 ⊆ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∧ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ⊆ 𝐴 ) ) ) |
| 26 | eqss | ⊢ ( 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ↔ ( 𝐴 ⊆ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∧ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ⊆ 𝐴 ) ) | |
| 27 | 25 26 | imbitrrdi | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ → ( ( ( card ‘ 𝐴 ) = 𝐴 ∧ ω ⊆ 𝐴 ) → 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 28 | 27 | com12 | ⊢ ( ( ( card ‘ 𝐴 ) = 𝐴 ∧ ω ⊆ 𝐴 ) → ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ → 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 29 | 28 | ancoms | ⊢ ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) → ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ → 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 30 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ 𝑦 ) ) | |
| 31 | 30 | sseq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ↔ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ) ) |
| 32 | 31 | onnminsb | ⊢ ( 𝑦 ∈ On → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } → ¬ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ) ) |
| 33 | vex | ⊢ 𝑦 ∈ V | |
| 34 | 33 | sucid | ⊢ 𝑦 ∈ suc 𝑦 |
| 35 | eleq2 | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ↔ 𝑦 ∈ suc 𝑦 ) ) | |
| 36 | 34 35 | mpbiri | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 → 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) |
| 37 | 32 36 | impel | ⊢ ( ( 𝑦 ∈ On ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ) → ¬ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ) |
| 38 | 37 | adantl | ⊢ ( ( ( card ‘ 𝐴 ) = 𝐴 ∧ ( 𝑦 ∈ On ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ) ) → ¬ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ) |
| 39 | fveq2 | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 → ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) = ( ℵ ‘ suc 𝑦 ) ) | |
| 40 | alephsuc | ⊢ ( 𝑦 ∈ On → ( ℵ ‘ suc 𝑦 ) = ( har ‘ ( ℵ ‘ 𝑦 ) ) ) | |
| 41 | 39 40 | sylan9eqr | ⊢ ( ( 𝑦 ∈ On ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ) → ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) = ( har ‘ ( ℵ ‘ 𝑦 ) ) ) |
| 42 | 41 | eleq2d | ⊢ ( ( 𝑦 ∈ On ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ) → ( 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ↔ 𝐴 ∈ ( har ‘ ( ℵ ‘ 𝑦 ) ) ) ) |
| 43 | 42 | biimpd | ⊢ ( ( 𝑦 ∈ On ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ) → ( 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → 𝐴 ∈ ( har ‘ ( ℵ ‘ 𝑦 ) ) ) ) |
| 44 | elharval | ⊢ ( 𝐴 ∈ ( har ‘ ( ℵ ‘ 𝑦 ) ) ↔ ( 𝐴 ∈ On ∧ 𝐴 ≼ ( ℵ ‘ 𝑦 ) ) ) | |
| 45 | 44 | simprbi | ⊢ ( 𝐴 ∈ ( har ‘ ( ℵ ‘ 𝑦 ) ) → 𝐴 ≼ ( ℵ ‘ 𝑦 ) ) |
| 46 | onenon | ⊢ ( 𝐴 ∈ On → 𝐴 ∈ dom card ) | |
| 47 | 3 46 | syl | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 → 𝐴 ∈ dom card ) |
| 48 | alephon | ⊢ ( ℵ ‘ 𝑦 ) ∈ On | |
| 49 | onenon | ⊢ ( ( ℵ ‘ 𝑦 ) ∈ On → ( ℵ ‘ 𝑦 ) ∈ dom card ) | |
| 50 | 48 49 | ax-mp | ⊢ ( ℵ ‘ 𝑦 ) ∈ dom card |
| 51 | carddom2 | ⊢ ( ( 𝐴 ∈ dom card ∧ ( ℵ ‘ 𝑦 ) ∈ dom card ) → ( ( card ‘ 𝐴 ) ⊆ ( card ‘ ( ℵ ‘ 𝑦 ) ) ↔ 𝐴 ≼ ( ℵ ‘ 𝑦 ) ) ) | |
| 52 | 47 50 51 | sylancl | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ( card ‘ 𝐴 ) ⊆ ( card ‘ ( ℵ ‘ 𝑦 ) ) ↔ 𝐴 ≼ ( ℵ ‘ 𝑦 ) ) ) |
| 53 | sseq1 | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ( card ‘ 𝐴 ) ⊆ ( card ‘ ( ℵ ‘ 𝑦 ) ) ↔ 𝐴 ⊆ ( card ‘ ( ℵ ‘ 𝑦 ) ) ) ) | |
| 54 | alephcard | ⊢ ( card ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) | |
| 55 | 54 | sseq2i | ⊢ ( 𝐴 ⊆ ( card ‘ ( ℵ ‘ 𝑦 ) ) ↔ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ) |
| 56 | 53 55 | bitrdi | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ( card ‘ 𝐴 ) ⊆ ( card ‘ ( ℵ ‘ 𝑦 ) ) ↔ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ) ) |
| 57 | 52 56 | bitr3d | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( 𝐴 ≼ ( ℵ ‘ 𝑦 ) ↔ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ) ) |
| 58 | 45 57 | imbitrid | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( 𝐴 ∈ ( har ‘ ( ℵ ‘ 𝑦 ) ) → 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ) ) |
| 59 | 43 58 | sylan9r | ⊢ ( ( ( card ‘ 𝐴 ) = 𝐴 ∧ ( 𝑦 ∈ On ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ) ) → ( 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ) ) |
| 60 | 38 59 | mtod | ⊢ ( ( ( card ‘ 𝐴 ) = 𝐴 ∧ ( 𝑦 ∈ On ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ) ) → ¬ 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) |
| 61 | 60 | rexlimdvaa | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ∃ 𝑦 ∈ On ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 → ¬ 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 62 | onintrab2 | ⊢ ( ∃ 𝑥 ∈ On 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ↔ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) | |
| 63 | 8 62 | sylib | ⊢ ( 𝐴 ∈ On → ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) |
| 64 | onelon | ⊢ ( ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ∧ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → 𝑦 ∈ On ) | |
| 65 | 63 64 | sylan | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → 𝑦 ∈ On ) |
| 66 | 32 | adantld | ⊢ ( 𝑦 ∈ On → ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → ¬ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ) ) |
| 67 | 65 66 | mpcom | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → ¬ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ) |
| 68 | 48 | onelssi | ⊢ ( 𝐴 ∈ ( ℵ ‘ 𝑦 ) → 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ) |
| 69 | 67 68 | nsyl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → ¬ 𝐴 ∈ ( ℵ ‘ 𝑦 ) ) |
| 70 | 69 | nrexdv | ⊢ ( 𝐴 ∈ On → ¬ ∃ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } 𝐴 ∈ ( ℵ ‘ 𝑦 ) ) |
| 71 | 70 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → ¬ ∃ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } 𝐴 ∈ ( ℵ ‘ 𝑦 ) ) |
| 72 | alephlim | ⊢ ( ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) = ∪ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ( ℵ ‘ 𝑦 ) ) | |
| 73 | 63 72 | sylan | ⊢ ( ( 𝐴 ∈ On ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) = ∪ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ( ℵ ‘ 𝑦 ) ) |
| 74 | 73 | eleq2d | ⊢ ( ( 𝐴 ∈ On ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → ( 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ↔ 𝐴 ∈ ∪ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ( ℵ ‘ 𝑦 ) ) ) |
| 75 | eliun | ⊢ ( 𝐴 ∈ ∪ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ( ℵ ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } 𝐴 ∈ ( ℵ ‘ 𝑦 ) ) | |
| 76 | 74 75 | bitrdi | ⊢ ( ( 𝐴 ∈ On ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → ( 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ↔ ∃ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } 𝐴 ∈ ( ℵ ‘ 𝑦 ) ) ) |
| 77 | 71 76 | mtbird | ⊢ ( ( 𝐴 ∈ On ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → ¬ 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) |
| 78 | 77 | ex | ⊢ ( 𝐴 ∈ On → ( Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } → ¬ 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 79 | 3 78 | syl | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } → ¬ 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 80 | 61 79 | jaod | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ( ∃ 𝑦 ∈ On ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → ¬ 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 81 | 8 17 | syl | ⊢ ( 𝐴 ∈ On → 𝐴 ⊆ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) |
| 82 | alephon | ⊢ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∈ On | |
| 83 | onsseleq | ⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∈ On ) → ( 𝐴 ⊆ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ↔ ( 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∨ 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) ) | |
| 84 | 82 83 | mpan2 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ⊆ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ↔ ( 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∨ 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) ) |
| 85 | 81 84 | mpbid | ⊢ ( 𝐴 ∈ On → ( 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∨ 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 86 | 85 | ord | ⊢ ( 𝐴 ∈ On → ( ¬ 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 87 | 3 80 86 | sylsyld | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ( ∃ 𝑦 ∈ On ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 88 | 87 | adantl | ⊢ ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) → ( ( ∃ 𝑦 ∈ On ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 89 | eloni | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → Ord ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) | |
| 90 | ordzsl | ⊢ ( Ord ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ↔ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ ∨ ∃ 𝑦 ∈ On ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) | |
| 91 | 3orass | ⊢ ( ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ ∨ ∃ 𝑦 ∈ On ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ↔ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ ∨ ( ∃ 𝑦 ∈ On ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) | |
| 92 | 90 91 | bitri | ⊢ ( Ord ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ↔ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ ∨ ( ∃ 𝑦 ∈ On ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 93 | 89 92 | sylib | ⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ ∨ ( ∃ 𝑦 ∈ On ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 94 | 3 63 93 | 3syl | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ ∨ ( ∃ 𝑦 ∈ On ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 95 | 94 | adantl | ⊢ ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) → ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ ∨ ( ∃ 𝑦 ∈ On ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 96 | 29 88 95 | mpjaod | ⊢ ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) → 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) |