This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given any transfinite cardinal number A , there is exactly one aleph that is equal to it. Here we compute that alephexplicitly. (Contributed by NM, 9-Nov-2003) (Revised by Mario Carneiro, 2-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cardaleph | |- ( ( _om C_ A /\ ( card ` A ) = A ) -> A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardon | |- ( card ` A ) e. On |
|
| 2 | eleq1 | |- ( ( card ` A ) = A -> ( ( card ` A ) e. On <-> A e. On ) ) |
|
| 3 | 1 2 | mpbii | |- ( ( card ` A ) = A -> A e. On ) |
| 4 | alephle | |- ( A e. On -> A C_ ( aleph ` A ) ) |
|
| 5 | fveq2 | |- ( x = A -> ( aleph ` x ) = ( aleph ` A ) ) |
|
| 6 | 5 | sseq2d | |- ( x = A -> ( A C_ ( aleph ` x ) <-> A C_ ( aleph ` A ) ) ) |
| 7 | 6 | rspcev | |- ( ( A e. On /\ A C_ ( aleph ` A ) ) -> E. x e. On A C_ ( aleph ` x ) ) |
| 8 | 4 7 | mpdan | |- ( A e. On -> E. x e. On A C_ ( aleph ` x ) ) |
| 9 | nfcv | |- F/_ x A |
|
| 10 | nfcv | |- F/_ x aleph |
|
| 11 | nfrab1 | |- F/_ x { x e. On | A C_ ( aleph ` x ) } |
|
| 12 | 11 | nfint | |- F/_ x |^| { x e. On | A C_ ( aleph ` x ) } |
| 13 | 10 12 | nffv | |- F/_ x ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) |
| 14 | 9 13 | nfss | |- F/ x A C_ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) |
| 15 | fveq2 | |- ( x = |^| { x e. On | A C_ ( aleph ` x ) } -> ( aleph ` x ) = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) |
|
| 16 | 15 | sseq2d | |- ( x = |^| { x e. On | A C_ ( aleph ` x ) } -> ( A C_ ( aleph ` x ) <-> A C_ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 17 | 14 16 | onminsb | |- ( E. x e. On A C_ ( aleph ` x ) -> A C_ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) |
| 18 | 3 8 17 | 3syl | |- ( ( card ` A ) = A -> A C_ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) |
| 19 | 18 | a1i | |- ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) -> ( ( card ` A ) = A -> A C_ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 20 | fveq2 | |- ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) -> ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) = ( aleph ` (/) ) ) |
|
| 21 | aleph0 | |- ( aleph ` (/) ) = _om |
|
| 22 | 20 21 | eqtrdi | |- ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) -> ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) = _om ) |
| 23 | 22 | sseq1d | |- ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) -> ( ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) C_ A <-> _om C_ A ) ) |
| 24 | 23 | biimprd | |- ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) -> ( _om C_ A -> ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) C_ A ) ) |
| 25 | 19 24 | anim12d | |- ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) -> ( ( ( card ` A ) = A /\ _om C_ A ) -> ( A C_ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) /\ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) C_ A ) ) ) |
| 26 | eqss | |- ( A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) <-> ( A C_ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) /\ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) C_ A ) ) |
|
| 27 | 25 26 | imbitrrdi | |- ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) -> ( ( ( card ` A ) = A /\ _om C_ A ) -> A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 28 | 27 | com12 | |- ( ( ( card ` A ) = A /\ _om C_ A ) -> ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) -> A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 29 | 28 | ancoms | |- ( ( _om C_ A /\ ( card ` A ) = A ) -> ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) -> A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 30 | fveq2 | |- ( x = y -> ( aleph ` x ) = ( aleph ` y ) ) |
|
| 31 | 30 | sseq2d | |- ( x = y -> ( A C_ ( aleph ` x ) <-> A C_ ( aleph ` y ) ) ) |
| 32 | 31 | onnminsb | |- ( y e. On -> ( y e. |^| { x e. On | A C_ ( aleph ` x ) } -> -. A C_ ( aleph ` y ) ) ) |
| 33 | vex | |- y e. _V |
|
| 34 | 33 | sucid | |- y e. suc y |
| 35 | eleq2 | |- ( |^| { x e. On | A C_ ( aleph ` x ) } = suc y -> ( y e. |^| { x e. On | A C_ ( aleph ` x ) } <-> y e. suc y ) ) |
|
| 36 | 34 35 | mpbiri | |- ( |^| { x e. On | A C_ ( aleph ` x ) } = suc y -> y e. |^| { x e. On | A C_ ( aleph ` x ) } ) |
| 37 | 32 36 | impel | |- ( ( y e. On /\ |^| { x e. On | A C_ ( aleph ` x ) } = suc y ) -> -. A C_ ( aleph ` y ) ) |
| 38 | 37 | adantl | |- ( ( ( card ` A ) = A /\ ( y e. On /\ |^| { x e. On | A C_ ( aleph ` x ) } = suc y ) ) -> -. A C_ ( aleph ` y ) ) |
| 39 | fveq2 | |- ( |^| { x e. On | A C_ ( aleph ` x ) } = suc y -> ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) = ( aleph ` suc y ) ) |
|
| 40 | alephsuc | |- ( y e. On -> ( aleph ` suc y ) = ( har ` ( aleph ` y ) ) ) |
|
| 41 | 39 40 | sylan9eqr | |- ( ( y e. On /\ |^| { x e. On | A C_ ( aleph ` x ) } = suc y ) -> ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) = ( har ` ( aleph ` y ) ) ) |
| 42 | 41 | eleq2d | |- ( ( y e. On /\ |^| { x e. On | A C_ ( aleph ` x ) } = suc y ) -> ( A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) <-> A e. ( har ` ( aleph ` y ) ) ) ) |
| 43 | 42 | biimpd | |- ( ( y e. On /\ |^| { x e. On | A C_ ( aleph ` x ) } = suc y ) -> ( A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) -> A e. ( har ` ( aleph ` y ) ) ) ) |
| 44 | elharval | |- ( A e. ( har ` ( aleph ` y ) ) <-> ( A e. On /\ A ~<_ ( aleph ` y ) ) ) |
|
| 45 | 44 | simprbi | |- ( A e. ( har ` ( aleph ` y ) ) -> A ~<_ ( aleph ` y ) ) |
| 46 | onenon | |- ( A e. On -> A e. dom card ) |
|
| 47 | 3 46 | syl | |- ( ( card ` A ) = A -> A e. dom card ) |
| 48 | alephon | |- ( aleph ` y ) e. On |
|
| 49 | onenon | |- ( ( aleph ` y ) e. On -> ( aleph ` y ) e. dom card ) |
|
| 50 | 48 49 | ax-mp | |- ( aleph ` y ) e. dom card |
| 51 | carddom2 | |- ( ( A e. dom card /\ ( aleph ` y ) e. dom card ) -> ( ( card ` A ) C_ ( card ` ( aleph ` y ) ) <-> A ~<_ ( aleph ` y ) ) ) |
|
| 52 | 47 50 51 | sylancl | |- ( ( card ` A ) = A -> ( ( card ` A ) C_ ( card ` ( aleph ` y ) ) <-> A ~<_ ( aleph ` y ) ) ) |
| 53 | sseq1 | |- ( ( card ` A ) = A -> ( ( card ` A ) C_ ( card ` ( aleph ` y ) ) <-> A C_ ( card ` ( aleph ` y ) ) ) ) |
|
| 54 | alephcard | |- ( card ` ( aleph ` y ) ) = ( aleph ` y ) |
|
| 55 | 54 | sseq2i | |- ( A C_ ( card ` ( aleph ` y ) ) <-> A C_ ( aleph ` y ) ) |
| 56 | 53 55 | bitrdi | |- ( ( card ` A ) = A -> ( ( card ` A ) C_ ( card ` ( aleph ` y ) ) <-> A C_ ( aleph ` y ) ) ) |
| 57 | 52 56 | bitr3d | |- ( ( card ` A ) = A -> ( A ~<_ ( aleph ` y ) <-> A C_ ( aleph ` y ) ) ) |
| 58 | 45 57 | imbitrid | |- ( ( card ` A ) = A -> ( A e. ( har ` ( aleph ` y ) ) -> A C_ ( aleph ` y ) ) ) |
| 59 | 43 58 | sylan9r | |- ( ( ( card ` A ) = A /\ ( y e. On /\ |^| { x e. On | A C_ ( aleph ` x ) } = suc y ) ) -> ( A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) -> A C_ ( aleph ` y ) ) ) |
| 60 | 38 59 | mtod | |- ( ( ( card ` A ) = A /\ ( y e. On /\ |^| { x e. On | A C_ ( aleph ` x ) } = suc y ) ) -> -. A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) |
| 61 | 60 | rexlimdvaa | |- ( ( card ` A ) = A -> ( E. y e. On |^| { x e. On | A C_ ( aleph ` x ) } = suc y -> -. A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 62 | onintrab2 | |- ( E. x e. On A C_ ( aleph ` x ) <-> |^| { x e. On | A C_ ( aleph ` x ) } e. On ) |
|
| 63 | 8 62 | sylib | |- ( A e. On -> |^| { x e. On | A C_ ( aleph ` x ) } e. On ) |
| 64 | onelon | |- ( ( |^| { x e. On | A C_ ( aleph ` x ) } e. On /\ y e. |^| { x e. On | A C_ ( aleph ` x ) } ) -> y e. On ) |
|
| 65 | 63 64 | sylan | |- ( ( A e. On /\ y e. |^| { x e. On | A C_ ( aleph ` x ) } ) -> y e. On ) |
| 66 | 32 | adantld | |- ( y e. On -> ( ( A e. On /\ y e. |^| { x e. On | A C_ ( aleph ` x ) } ) -> -. A C_ ( aleph ` y ) ) ) |
| 67 | 65 66 | mpcom | |- ( ( A e. On /\ y e. |^| { x e. On | A C_ ( aleph ` x ) } ) -> -. A C_ ( aleph ` y ) ) |
| 68 | 48 | onelssi | |- ( A e. ( aleph ` y ) -> A C_ ( aleph ` y ) ) |
| 69 | 67 68 | nsyl | |- ( ( A e. On /\ y e. |^| { x e. On | A C_ ( aleph ` x ) } ) -> -. A e. ( aleph ` y ) ) |
| 70 | 69 | nrexdv | |- ( A e. On -> -. E. y e. |^| { x e. On | A C_ ( aleph ` x ) } A e. ( aleph ` y ) ) |
| 71 | 70 | adantr | |- ( ( A e. On /\ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) -> -. E. y e. |^| { x e. On | A C_ ( aleph ` x ) } A e. ( aleph ` y ) ) |
| 72 | alephlim | |- ( ( |^| { x e. On | A C_ ( aleph ` x ) } e. On /\ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) -> ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) = U_ y e. |^| { x e. On | A C_ ( aleph ` x ) } ( aleph ` y ) ) |
|
| 73 | 63 72 | sylan | |- ( ( A e. On /\ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) -> ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) = U_ y e. |^| { x e. On | A C_ ( aleph ` x ) } ( aleph ` y ) ) |
| 74 | 73 | eleq2d | |- ( ( A e. On /\ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) -> ( A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) <-> A e. U_ y e. |^| { x e. On | A C_ ( aleph ` x ) } ( aleph ` y ) ) ) |
| 75 | eliun | |- ( A e. U_ y e. |^| { x e. On | A C_ ( aleph ` x ) } ( aleph ` y ) <-> E. y e. |^| { x e. On | A C_ ( aleph ` x ) } A e. ( aleph ` y ) ) |
|
| 76 | 74 75 | bitrdi | |- ( ( A e. On /\ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) -> ( A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) <-> E. y e. |^| { x e. On | A C_ ( aleph ` x ) } A e. ( aleph ` y ) ) ) |
| 77 | 71 76 | mtbird | |- ( ( A e. On /\ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) -> -. A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) |
| 78 | 77 | ex | |- ( A e. On -> ( Lim |^| { x e. On | A C_ ( aleph ` x ) } -> -. A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 79 | 3 78 | syl | |- ( ( card ` A ) = A -> ( Lim |^| { x e. On | A C_ ( aleph ` x ) } -> -. A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 80 | 61 79 | jaod | |- ( ( card ` A ) = A -> ( ( E. y e. On |^| { x e. On | A C_ ( aleph ` x ) } = suc y \/ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) -> -. A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 81 | 8 17 | syl | |- ( A e. On -> A C_ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) |
| 82 | alephon | |- ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) e. On |
|
| 83 | onsseleq | |- ( ( A e. On /\ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) e. On ) -> ( A C_ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) <-> ( A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) \/ A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) ) |
|
| 84 | 82 83 | mpan2 | |- ( A e. On -> ( A C_ ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) <-> ( A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) \/ A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) ) |
| 85 | 81 84 | mpbid | |- ( A e. On -> ( A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) \/ A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 86 | 85 | ord | |- ( A e. On -> ( -. A e. ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) -> A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 87 | 3 80 86 | sylsyld | |- ( ( card ` A ) = A -> ( ( E. y e. On |^| { x e. On | A C_ ( aleph ` x ) } = suc y \/ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) -> A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 88 | 87 | adantl | |- ( ( _om C_ A /\ ( card ` A ) = A ) -> ( ( E. y e. On |^| { x e. On | A C_ ( aleph ` x ) } = suc y \/ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) -> A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 89 | eloni | |- ( |^| { x e. On | A C_ ( aleph ` x ) } e. On -> Ord |^| { x e. On | A C_ ( aleph ` x ) } ) |
|
| 90 | ordzsl | |- ( Ord |^| { x e. On | A C_ ( aleph ` x ) } <-> ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) \/ E. y e. On |^| { x e. On | A C_ ( aleph ` x ) } = suc y \/ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) ) |
|
| 91 | 3orass | |- ( ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) \/ E. y e. On |^| { x e. On | A C_ ( aleph ` x ) } = suc y \/ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) <-> ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) \/ ( E. y e. On |^| { x e. On | A C_ ( aleph ` x ) } = suc y \/ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
|
| 92 | 90 91 | bitri | |- ( Ord |^| { x e. On | A C_ ( aleph ` x ) } <-> ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) \/ ( E. y e. On |^| { x e. On | A C_ ( aleph ` x ) } = suc y \/ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 93 | 89 92 | sylib | |- ( |^| { x e. On | A C_ ( aleph ` x ) } e. On -> ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) \/ ( E. y e. On |^| { x e. On | A C_ ( aleph ` x ) } = suc y \/ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 94 | 3 63 93 | 3syl | |- ( ( card ` A ) = A -> ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) \/ ( E. y e. On |^| { x e. On | A C_ ( aleph ` x ) } = suc y \/ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 95 | 94 | adantl | |- ( ( _om C_ A /\ ( card ` A ) = A ) -> ( |^| { x e. On | A C_ ( aleph ` x ) } = (/) \/ ( E. y e. On |^| { x e. On | A C_ ( aleph ` x ) } = suc y \/ Lim |^| { x e. On | A C_ ( aleph ` x ) } ) ) ) |
| 96 | 29 88 95 | mpjaod | |- ( ( _om C_ A /\ ( card ` A ) = A ) -> A = ( aleph ` |^| { x e. On | A C_ ( aleph ` x ) } ) ) |