This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The argument of the aleph function is less than or equal to its value. Exercise 2 of TakeutiZaring p. 91. (Later, in alephfp2 , we will that equality can sometimes hold.) (Contributed by NM, 9-Nov-2003) (Proof shortened by Mario Carneiro, 22-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephle | ⊢ ( 𝐴 ∈ On → 𝐴 ⊆ ( ℵ ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 2 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ 𝑦 ) ) | |
| 3 | 1 2 | sseq12d | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ ( ℵ ‘ 𝑥 ) ↔ 𝑦 ⊆ ( ℵ ‘ 𝑦 ) ) ) |
| 4 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 5 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ 𝐴 ) ) | |
| 6 | 4 5 | sseq12d | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊆ ( ℵ ‘ 𝑥 ) ↔ 𝐴 ⊆ ( ℵ ‘ 𝐴 ) ) ) |
| 7 | alephord2i | ⊢ ( 𝑥 ∈ On → ( 𝑦 ∈ 𝑥 → ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝑥 ) ) ) | |
| 8 | 7 | imp | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝑥 ) ) |
| 9 | onelon | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) | |
| 10 | alephon | ⊢ ( ℵ ‘ 𝑥 ) ∈ On | |
| 11 | ontr2 | ⊢ ( ( 𝑦 ∈ On ∧ ( ℵ ‘ 𝑥 ) ∈ On ) → ( ( 𝑦 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝑥 ) ) → 𝑦 ∈ ( ℵ ‘ 𝑥 ) ) ) | |
| 12 | 9 10 11 | sylancl | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑦 ⊆ ( ℵ ‘ 𝑦 ) ∧ ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ 𝑥 ) ) → 𝑦 ∈ ( ℵ ‘ 𝑥 ) ) ) |
| 13 | 8 12 | mpan2d | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ( 𝑦 ⊆ ( ℵ ‘ 𝑦 ) → 𝑦 ∈ ( ℵ ‘ 𝑥 ) ) ) |
| 14 | 13 | ralimdva | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 𝑦 ⊆ ( ℵ ‘ 𝑦 ) → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ( ℵ ‘ 𝑥 ) ) ) |
| 15 | 10 | onirri | ⊢ ¬ ( ℵ ‘ 𝑥 ) ∈ ( ℵ ‘ 𝑥 ) |
| 16 | eleq1 | ⊢ ( 𝑦 = ( ℵ ‘ 𝑥 ) → ( 𝑦 ∈ ( ℵ ‘ 𝑥 ) ↔ ( ℵ ‘ 𝑥 ) ∈ ( ℵ ‘ 𝑥 ) ) ) | |
| 17 | 16 | rspccv | ⊢ ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ( ℵ ‘ 𝑥 ) → ( ( ℵ ‘ 𝑥 ) ∈ 𝑥 → ( ℵ ‘ 𝑥 ) ∈ ( ℵ ‘ 𝑥 ) ) ) |
| 18 | 15 17 | mtoi | ⊢ ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ( ℵ ‘ 𝑥 ) → ¬ ( ℵ ‘ 𝑥 ) ∈ 𝑥 ) |
| 19 | ontri1 | ⊢ ( ( 𝑥 ∈ On ∧ ( ℵ ‘ 𝑥 ) ∈ On ) → ( 𝑥 ⊆ ( ℵ ‘ 𝑥 ) ↔ ¬ ( ℵ ‘ 𝑥 ) ∈ 𝑥 ) ) | |
| 20 | 10 19 | mpan2 | ⊢ ( 𝑥 ∈ On → ( 𝑥 ⊆ ( ℵ ‘ 𝑥 ) ↔ ¬ ( ℵ ‘ 𝑥 ) ∈ 𝑥 ) ) |
| 21 | 18 20 | imbitrrid | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ( ℵ ‘ 𝑥 ) → 𝑥 ⊆ ( ℵ ‘ 𝑥 ) ) ) |
| 22 | 14 21 | syld | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 𝑦 ⊆ ( ℵ ‘ 𝑦 ) → 𝑥 ⊆ ( ℵ ‘ 𝑥 ) ) ) |
| 23 | 3 6 22 | tfis3 | ⊢ ( 𝐴 ∈ On → 𝐴 ⊆ ( ℵ ‘ 𝐴 ) ) |