This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cantnfp1 . (Contributed by Mario Carneiro, 28-May-2015) (Revised by AV, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | |- S = dom ( A CNF B ) |
|
| cantnfs.a | |- ( ph -> A e. On ) |
||
| cantnfs.b | |- ( ph -> B e. On ) |
||
| cantnfp1.g | |- ( ph -> G e. S ) |
||
| cantnfp1.x | |- ( ph -> X e. B ) |
||
| cantnfp1.y | |- ( ph -> Y e. A ) |
||
| cantnfp1.s | |- ( ph -> ( G supp (/) ) C_ X ) |
||
| cantnfp1.f | |- F = ( t e. B |-> if ( t = X , Y , ( G ` t ) ) ) |
||
| cantnfp1.e | |- ( ph -> (/) e. Y ) |
||
| cantnfp1.o | |- O = OrdIso ( _E , ( F supp (/) ) ) |
||
| Assertion | cantnfp1lem2 | |- ( ph -> dom O = suc U. dom O ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | |- S = dom ( A CNF B ) |
|
| 2 | cantnfs.a | |- ( ph -> A e. On ) |
|
| 3 | cantnfs.b | |- ( ph -> B e. On ) |
|
| 4 | cantnfp1.g | |- ( ph -> G e. S ) |
|
| 5 | cantnfp1.x | |- ( ph -> X e. B ) |
|
| 6 | cantnfp1.y | |- ( ph -> Y e. A ) |
|
| 7 | cantnfp1.s | |- ( ph -> ( G supp (/) ) C_ X ) |
|
| 8 | cantnfp1.f | |- F = ( t e. B |-> if ( t = X , Y , ( G ` t ) ) ) |
|
| 9 | cantnfp1.e | |- ( ph -> (/) e. Y ) |
|
| 10 | cantnfp1.o | |- O = OrdIso ( _E , ( F supp (/) ) ) |
|
| 11 | iftrue | |- ( t = X -> if ( t = X , Y , ( G ` t ) ) = Y ) |
|
| 12 | 8 11 5 6 | fvmptd3 | |- ( ph -> ( F ` X ) = Y ) |
| 13 | 9 | ne0d | |- ( ph -> Y =/= (/) ) |
| 14 | 12 13 | eqnetrd | |- ( ph -> ( F ` X ) =/= (/) ) |
| 15 | 6 | adantr | |- ( ( ph /\ t e. B ) -> Y e. A ) |
| 16 | 1 2 3 | cantnfs | |- ( ph -> ( G e. S <-> ( G : B --> A /\ G finSupp (/) ) ) ) |
| 17 | 4 16 | mpbid | |- ( ph -> ( G : B --> A /\ G finSupp (/) ) ) |
| 18 | 17 | simpld | |- ( ph -> G : B --> A ) |
| 19 | 18 | ffvelcdmda | |- ( ( ph /\ t e. B ) -> ( G ` t ) e. A ) |
| 20 | 15 19 | ifcld | |- ( ( ph /\ t e. B ) -> if ( t = X , Y , ( G ` t ) ) e. A ) |
| 21 | 20 8 | fmptd | |- ( ph -> F : B --> A ) |
| 22 | 21 | ffnd | |- ( ph -> F Fn B ) |
| 23 | 9 | elexd | |- ( ph -> (/) e. _V ) |
| 24 | elsuppfn | |- ( ( F Fn B /\ B e. On /\ (/) e. _V ) -> ( X e. ( F supp (/) ) <-> ( X e. B /\ ( F ` X ) =/= (/) ) ) ) |
|
| 25 | 22 3 23 24 | syl3anc | |- ( ph -> ( X e. ( F supp (/) ) <-> ( X e. B /\ ( F ` X ) =/= (/) ) ) ) |
| 26 | 5 14 25 | mpbir2and | |- ( ph -> X e. ( F supp (/) ) ) |
| 27 | n0i | |- ( X e. ( F supp (/) ) -> -. ( F supp (/) ) = (/) ) |
|
| 28 | 26 27 | syl | |- ( ph -> -. ( F supp (/) ) = (/) ) |
| 29 | ovexd | |- ( ph -> ( F supp (/) ) e. _V ) |
|
| 30 | 1 2 3 4 5 6 7 8 | cantnfp1lem1 | |- ( ph -> F e. S ) |
| 31 | 1 2 3 10 30 | cantnfcl | |- ( ph -> ( _E We ( F supp (/) ) /\ dom O e. _om ) ) |
| 32 | 31 | simpld | |- ( ph -> _E We ( F supp (/) ) ) |
| 33 | 10 | oien | |- ( ( ( F supp (/) ) e. _V /\ _E We ( F supp (/) ) ) -> dom O ~~ ( F supp (/) ) ) |
| 34 | 29 32 33 | syl2anc | |- ( ph -> dom O ~~ ( F supp (/) ) ) |
| 35 | breq1 | |- ( dom O = (/) -> ( dom O ~~ ( F supp (/) ) <-> (/) ~~ ( F supp (/) ) ) ) |
|
| 36 | ensymb | |- ( (/) ~~ ( F supp (/) ) <-> ( F supp (/) ) ~~ (/) ) |
|
| 37 | en0 | |- ( ( F supp (/) ) ~~ (/) <-> ( F supp (/) ) = (/) ) |
|
| 38 | 36 37 | bitri | |- ( (/) ~~ ( F supp (/) ) <-> ( F supp (/) ) = (/) ) |
| 39 | 35 38 | bitrdi | |- ( dom O = (/) -> ( dom O ~~ ( F supp (/) ) <-> ( F supp (/) ) = (/) ) ) |
| 40 | 34 39 | syl5ibcom | |- ( ph -> ( dom O = (/) -> ( F supp (/) ) = (/) ) ) |
| 41 | 28 40 | mtod | |- ( ph -> -. dom O = (/) ) |
| 42 | 31 | simprd | |- ( ph -> dom O e. _om ) |
| 43 | nnlim | |- ( dom O e. _om -> -. Lim dom O ) |
|
| 44 | 42 43 | syl | |- ( ph -> -. Lim dom O ) |
| 45 | ioran | |- ( -. ( dom O = (/) \/ Lim dom O ) <-> ( -. dom O = (/) /\ -. Lim dom O ) ) |
|
| 46 | 41 44 45 | sylanbrc | |- ( ph -> -. ( dom O = (/) \/ Lim dom O ) ) |
| 47 | nnord | |- ( dom O e. _om -> Ord dom O ) |
|
| 48 | unizlim | |- ( Ord dom O -> ( dom O = U. dom O <-> ( dom O = (/) \/ Lim dom O ) ) ) |
|
| 49 | 42 47 48 | 3syl | |- ( ph -> ( dom O = U. dom O <-> ( dom O = (/) \/ Lim dom O ) ) ) |
| 50 | 46 49 | mtbird | |- ( ph -> -. dom O = U. dom O ) |
| 51 | orduniorsuc | |- ( Ord dom O -> ( dom O = U. dom O \/ dom O = suc U. dom O ) ) |
|
| 52 | 42 47 51 | 3syl | |- ( ph -> ( dom O = U. dom O \/ dom O = suc U. dom O ) ) |
| 53 | 52 | ord | |- ( ph -> ( -. dom O = U. dom O -> dom O = suc U. dom O ) ) |
| 54 | 50 53 | mpd | |- ( ph -> dom O = suc U. dom O ) |