This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding and subtracting one gives back the original cardinality. Similar to pncan for cardinalities. (Contributed by Mario Carneiro, 18-May-2015) (Revised by Jim Kingdon, 20-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dju1dif | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝐴 ⊔ 1o ) ) → ( ( 𝐴 ⊔ 1o ) ∖ { 𝐵 } ) ≈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝐴 ⊔ 1o ) ) → 𝐴 ∈ 𝑉 ) | |
| 2 | 1oex | ⊢ 1o ∈ V | |
| 3 | djuex | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 1o ∈ V ) → ( 𝐴 ⊔ 1o ) ∈ V ) | |
| 4 | 1 2 3 | sylancl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝐴 ⊔ 1o ) ) → ( 𝐴 ⊔ 1o ) ∈ V ) |
| 5 | simpr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝐴 ⊔ 1o ) ) → 𝐵 ∈ ( 𝐴 ⊔ 1o ) ) | |
| 6 | df1o2 | ⊢ 1o = { ∅ } | |
| 7 | 6 | xpeq2i | ⊢ ( { 1o } × 1o ) = ( { 1o } × { ∅ } ) |
| 8 | 0ex | ⊢ ∅ ∈ V | |
| 9 | 2 8 | xpsn | ⊢ ( { 1o } × { ∅ } ) = { 〈 1o , ∅ 〉 } |
| 10 | 7 9 | eqtri | ⊢ ( { 1o } × 1o ) = { 〈 1o , ∅ 〉 } |
| 11 | ssun2 | ⊢ ( { 1o } × 1o ) ⊆ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) | |
| 12 | 10 11 | eqsstrri | ⊢ { 〈 1o , ∅ 〉 } ⊆ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) |
| 13 | opex | ⊢ 〈 1o , ∅ 〉 ∈ V | |
| 14 | 13 | snss | ⊢ ( 〈 1o , ∅ 〉 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ↔ { 〈 1o , ∅ 〉 } ⊆ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ) |
| 15 | 12 14 | mpbir | ⊢ 〈 1o , ∅ 〉 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) |
| 16 | df-dju | ⊢ ( 𝐴 ⊔ 1o ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) | |
| 17 | 15 16 | eleqtrri | ⊢ 〈 1o , ∅ 〉 ∈ ( 𝐴 ⊔ 1o ) |
| 18 | 17 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝐴 ⊔ 1o ) ) → 〈 1o , ∅ 〉 ∈ ( 𝐴 ⊔ 1o ) ) |
| 19 | difsnen | ⊢ ( ( ( 𝐴 ⊔ 1o ) ∈ V ∧ 𝐵 ∈ ( 𝐴 ⊔ 1o ) ∧ 〈 1o , ∅ 〉 ∈ ( 𝐴 ⊔ 1o ) ) → ( ( 𝐴 ⊔ 1o ) ∖ { 𝐵 } ) ≈ ( ( 𝐴 ⊔ 1o ) ∖ { 〈 1o , ∅ 〉 } ) ) | |
| 20 | 4 5 18 19 | syl3anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝐴 ⊔ 1o ) ) → ( ( 𝐴 ⊔ 1o ) ∖ { 𝐵 } ) ≈ ( ( 𝐴 ⊔ 1o ) ∖ { 〈 1o , ∅ 〉 } ) ) |
| 21 | 16 | difeq1i | ⊢ ( ( 𝐴 ⊔ 1o ) ∖ { 〈 1o , ∅ 〉 } ) = ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ∖ { 〈 1o , ∅ 〉 } ) |
| 22 | xp01disjl | ⊢ ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 1o ) ) = ∅ | |
| 23 | disj3 | ⊢ ( ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 1o ) ) = ∅ ↔ ( { ∅ } × 𝐴 ) = ( ( { ∅ } × 𝐴 ) ∖ ( { 1o } × 1o ) ) ) | |
| 24 | 22 23 | mpbi | ⊢ ( { ∅ } × 𝐴 ) = ( ( { ∅ } × 𝐴 ) ∖ ( { 1o } × 1o ) ) |
| 25 | difun2 | ⊢ ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ∖ ( { 1o } × 1o ) ) = ( ( { ∅ } × 𝐴 ) ∖ ( { 1o } × 1o ) ) | |
| 26 | 10 | difeq2i | ⊢ ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ∖ ( { 1o } × 1o ) ) = ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ∖ { 〈 1o , ∅ 〉 } ) |
| 27 | 24 25 26 | 3eqtr2i | ⊢ ( { ∅ } × 𝐴 ) = ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ∖ { 〈 1o , ∅ 〉 } ) |
| 28 | 21 27 | eqtr4i | ⊢ ( ( 𝐴 ⊔ 1o ) ∖ { 〈 1o , ∅ 〉 } ) = ( { ∅ } × 𝐴 ) |
| 29 | xpsnen2g | ⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) | |
| 30 | 8 1 29 | sylancr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝐴 ⊔ 1o ) ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
| 31 | 28 30 | eqbrtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝐴 ⊔ 1o ) ) → ( ( 𝐴 ⊔ 1o ) ∖ { 〈 1o , ∅ 〉 } ) ≈ 𝐴 ) |
| 32 | entr | ⊢ ( ( ( ( 𝐴 ⊔ 1o ) ∖ { 𝐵 } ) ≈ ( ( 𝐴 ⊔ 1o ) ∖ { 〈 1o , ∅ 〉 } ) ∧ ( ( 𝐴 ⊔ 1o ) ∖ { 〈 1o , ∅ 〉 } ) ≈ 𝐴 ) → ( ( 𝐴 ⊔ 1o ) ∖ { 𝐵 } ) ≈ 𝐴 ) | |
| 33 | 20 31 32 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝐴 ⊔ 1o ) ) → ( ( 𝐴 ⊔ 1o ) ∖ { 𝐵 } ) ≈ 𝐴 ) |