This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for bcth . Given any open ball ( C ( ballD ) R ) as starting point (and in particular, a ball in int ( U. ran M ) ), the limit point x of the centers of the induced sequence of balls g is outside U. ran M . Note that a set A has empty interior iff every nonempty open set U contains points outside A , i.e. ( U \ A ) =/= (/) . (Contributed by Mario Carneiro, 7-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bcth.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| bcthlem.4 | ⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) | ||
| bcthlem.5 | ⊢ 𝐹 = ( 𝑘 ∈ ℕ , 𝑧 ∈ ( 𝑋 × ℝ+ ) ↦ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) } ) | ||
| bcthlem.6 | ⊢ ( 𝜑 → 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) | ||
| bcthlem.7 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| bcthlem.8 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | ||
| bcthlem.9 | ⊢ ( 𝜑 → 𝑔 : ℕ ⟶ ( 𝑋 × ℝ+ ) ) | ||
| bcthlem.10 | ⊢ ( 𝜑 → ( 𝑔 ‘ 1 ) = 〈 𝐶 , 𝑅 〉 ) | ||
| bcthlem.11 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) | ||
| Assertion | bcthlem4 | ⊢ ( 𝜑 → ( ( 𝐶 ( ball ‘ 𝐷 ) 𝑅 ) ∖ ∪ ran 𝑀 ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bcth.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | bcthlem.4 | ⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) | |
| 3 | bcthlem.5 | ⊢ 𝐹 = ( 𝑘 ∈ ℕ , 𝑧 ∈ ( 𝑋 × ℝ+ ) ↦ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) } ) | |
| 4 | bcthlem.6 | ⊢ ( 𝜑 → 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) | |
| 5 | bcthlem.7 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 6 | bcthlem.8 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | |
| 7 | bcthlem.9 | ⊢ ( 𝜑 → 𝑔 : ℕ ⟶ ( 𝑋 × ℝ+ ) ) | |
| 8 | bcthlem.10 | ⊢ ( 𝜑 → ( 𝑔 ‘ 1 ) = 〈 𝐶 , 𝑅 〉 ) | |
| 9 | bcthlem.11 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) | |
| 10 | cmetmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 11 | 2 10 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 12 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 14 | 1 2 3 4 5 6 7 8 9 | bcthlem2 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ⊆ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑛 ) ) ) |
| 15 | elrp | ⊢ ( 𝑟 ∈ ℝ+ ↔ ( 𝑟 ∈ ℝ ∧ 0 < 𝑟 ) ) | |
| 16 | nnrecl | ⊢ ( ( 𝑟 ∈ ℝ ∧ 0 < 𝑟 ) → ∃ 𝑚 ∈ ℕ ( 1 / 𝑚 ) < 𝑟 ) | |
| 17 | 15 16 | sylbi | ⊢ ( 𝑟 ∈ ℝ+ → ∃ 𝑚 ∈ ℕ ( 1 / 𝑚 ) < 𝑟 ) |
| 18 | 17 | adantl | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑚 ∈ ℕ ( 1 / 𝑚 ) < 𝑟 ) |
| 19 | peano2nn | ⊢ ( 𝑚 ∈ ℕ → ( 𝑚 + 1 ) ∈ ℕ ) | |
| 20 | 19 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 + 1 ) ∈ ℕ ) |
| 21 | fvoveq1 | ⊢ ( 𝑘 = 𝑚 → ( 𝑔 ‘ ( 𝑘 + 1 ) ) = ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) | |
| 22 | id | ⊢ ( 𝑘 = 𝑚 → 𝑘 = 𝑚 ) | |
| 23 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑚 ) ) | |
| 24 | 22 23 | oveq12d | ⊢ ( 𝑘 = 𝑚 → ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) = ( 𝑚 𝐹 ( 𝑔 ‘ 𝑚 ) ) ) |
| 25 | 21 24 | eleq12d | ⊢ ( 𝑘 = 𝑚 → ( ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ↔ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑔 ‘ 𝑚 ) ) ) ) |
| 26 | 25 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑔 ‘ 𝑚 ) ) ) |
| 27 | 9 26 | sylan | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑔 ‘ 𝑚 ) ) ) |
| 28 | 7 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑔 ‘ 𝑚 ) ∈ ( 𝑋 × ℝ+ ) ) |
| 29 | 1 2 3 | bcthlem1 | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ ( 𝑔 ‘ 𝑚 ) ∈ ( 𝑋 × ℝ+ ) ) ) → ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑔 ‘ 𝑚 ) ) ↔ ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < ( 1 / 𝑚 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑚 ) ) ∖ ( 𝑀 ‘ 𝑚 ) ) ) ) ) |
| 30 | 29 | expr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑚 ) ∈ ( 𝑋 × ℝ+ ) → ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑔 ‘ 𝑚 ) ) ↔ ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < ( 1 / 𝑚 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑚 ) ) ∖ ( 𝑀 ‘ 𝑚 ) ) ) ) ) ) |
| 31 | 28 30 | mpd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑚 𝐹 ( 𝑔 ‘ 𝑚 ) ) ↔ ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < ( 1 / 𝑚 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑚 ) ) ∖ ( 𝑀 ‘ 𝑚 ) ) ) ) ) |
| 32 | 27 31 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < ( 1 / 𝑚 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑚 ) ) ∖ ( 𝑀 ‘ 𝑚 ) ) ) ) |
| 33 | 32 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < ( 1 / 𝑚 ) ) |
| 34 | 33 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑚 ∈ ℕ ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < ( 1 / 𝑚 ) ) |
| 35 | 32 | simp1d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑋 × ℝ+ ) ) |
| 36 | xp2nd | ⊢ ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑋 × ℝ+ ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ∈ ℝ+ ) | |
| 37 | 35 36 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ∈ ℝ+ ) |
| 38 | 37 | rpred | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ∈ ℝ ) |
| 39 | 38 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑚 ∈ ℕ ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ∈ ℝ ) |
| 40 | nnrecre | ⊢ ( 𝑚 ∈ ℕ → ( 1 / 𝑚 ) ∈ ℝ ) | |
| 41 | 40 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑚 ∈ ℕ ) → ( 1 / 𝑚 ) ∈ ℝ ) |
| 42 | rpre | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ ) | |
| 43 | 42 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑚 ∈ ℕ ) → 𝑟 ∈ ℝ ) |
| 44 | lttr | ⊢ ( ( ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ∈ ℝ ∧ ( 1 / 𝑚 ) ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( ( ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < ( 1 / 𝑚 ) ∧ ( 1 / 𝑚 ) < 𝑟 ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < 𝑟 ) ) | |
| 45 | 39 41 43 44 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑚 ∈ ℕ ) → ( ( ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < ( 1 / 𝑚 ) ∧ ( 1 / 𝑚 ) < 𝑟 ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < 𝑟 ) ) |
| 46 | 34 45 | mpand | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑚 ∈ ℕ ) → ( ( 1 / 𝑚 ) < 𝑟 → ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < 𝑟 ) ) |
| 47 | 2fveq3 | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) = ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) | |
| 48 | 47 | breq1d | ⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) < 𝑟 ↔ ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < 𝑟 ) ) |
| 49 | 48 | rspcev | ⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) < 𝑟 ) → ∃ 𝑛 ∈ ℕ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) < 𝑟 ) |
| 50 | 20 46 49 | syl6an | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑚 ∈ ℕ ) → ( ( 1 / 𝑚 ) < 𝑟 → ∃ 𝑛 ∈ ℕ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) < 𝑟 ) ) |
| 51 | 50 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑚 ∈ ℕ ( 1 / 𝑚 ) < 𝑟 → ∃ 𝑛 ∈ ℕ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) < 𝑟 ) ) |
| 52 | 18 51 | mpd | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑛 ∈ ℕ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) < 𝑟 ) |
| 53 | 52 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑟 ∈ ℝ+ ∃ 𝑛 ∈ ℕ ( 2nd ‘ ( 𝑔 ‘ 𝑛 ) ) < 𝑟 ) |
| 54 | 13 7 14 53 | caubl | ⊢ ( 𝜑 → ( 1st ∘ 𝑔 ) ∈ ( Cau ‘ 𝐷 ) ) |
| 55 | 1 | cmetcau | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 1st ∘ 𝑔 ) ∈ ( Cau ‘ 𝐷 ) ) → ( 1st ∘ 𝑔 ) ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
| 56 | 2 54 55 | syl2anc | ⊢ ( 𝜑 → ( 1st ∘ 𝑔 ) ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
| 57 | fo1st | ⊢ 1st : V –onto→ V | |
| 58 | fofun | ⊢ ( 1st : V –onto→ V → Fun 1st ) | |
| 59 | 57 58 | ax-mp | ⊢ Fun 1st |
| 60 | vex | ⊢ 𝑔 ∈ V | |
| 61 | cofunexg | ⊢ ( ( Fun 1st ∧ 𝑔 ∈ V ) → ( 1st ∘ 𝑔 ) ∈ V ) | |
| 62 | 59 60 61 | mp2an | ⊢ ( 1st ∘ 𝑔 ) ∈ V |
| 63 | 62 | eldm | ⊢ ( ( 1st ∘ 𝑔 ) ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ↔ ∃ 𝑥 ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) |
| 64 | 56 63 | sylib | ⊢ ( 𝜑 → ∃ 𝑥 ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) |
| 65 | 1nn | ⊢ 1 ∈ ℕ | |
| 66 | 1 2 3 4 5 6 7 8 9 | bcthlem3 | ⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ∧ 1 ∈ ℕ ) → 𝑥 ∈ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 1 ) ) ) |
| 67 | 65 66 | mp3an3 | ⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 1 ) ) ) |
| 68 | 8 | fveq2d | ⊢ ( 𝜑 → ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 1 ) ) = ( ( ball ‘ 𝐷 ) ‘ 〈 𝐶 , 𝑅 〉 ) ) |
| 69 | df-ov | ⊢ ( 𝐶 ( ball ‘ 𝐷 ) 𝑅 ) = ( ( ball ‘ 𝐷 ) ‘ 〈 𝐶 , 𝑅 〉 ) | |
| 70 | 68 69 | eqtr4di | ⊢ ( 𝜑 → ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 1 ) ) = ( 𝐶 ( ball ‘ 𝐷 ) 𝑅 ) ) |
| 71 | 70 | adantr | ⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 1 ) ) = ( 𝐶 ( ball ‘ 𝐷 ) 𝑅 ) ) |
| 72 | 67 71 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ ( 𝐶 ( ball ‘ 𝐷 ) 𝑅 ) ) |
| 73 | 1 | mopntop | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 74 | 13 73 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 75 | 74 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐽 ∈ Top ) |
| 76 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 77 | xp1st | ⊢ ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑋 × ℝ+ ) → ( 1st ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ∈ 𝑋 ) | |
| 78 | 35 77 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 1st ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ∈ 𝑋 ) |
| 79 | 37 | rpxrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ∈ ℝ* ) |
| 80 | blssm | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1st ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ∈ 𝑋 ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ∈ ℝ* ) → ( ( 1st ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) ⊆ 𝑋 ) | |
| 81 | 76 78 79 80 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 1st ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) ⊆ 𝑋 ) |
| 82 | df-ov | ⊢ ( ( 1st ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) = ( ( ball ‘ 𝐷 ) ‘ 〈 ( 1st ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) 〉 ) | |
| 83 | 1st2nd2 | ⊢ ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ∈ ( 𝑋 × ℝ+ ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 〈 ( 1st ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) 〉 ) | |
| 84 | 35 83 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) = 〈 ( 1st ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) 〉 ) |
| 85 | 84 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) = ( ( ball ‘ 𝐷 ) ‘ 〈 ( 1st ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) , ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) 〉 ) ) |
| 86 | 82 85 | eqtr4id | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 1st ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) = ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) |
| 87 | 1 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 88 | 13 87 | syl | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 89 | 88 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑋 = ∪ 𝐽 ) |
| 90 | 81 86 89 | 3sstr3d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ⊆ ∪ 𝐽 ) |
| 91 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 92 | 91 | sscls | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ⊆ ∪ 𝐽 ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) ) |
| 93 | 75 90 92 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) ) |
| 94 | 32 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑚 ) ) ∖ ( 𝑀 ‘ 𝑚 ) ) ) |
| 95 | 93 94 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑚 ) ) ∖ ( 𝑀 ‘ 𝑚 ) ) ) |
| 96 | 95 | 3adant2 | ⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ∧ 𝑚 ∈ ℕ ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑚 ) ) ∖ ( 𝑀 ‘ 𝑚 ) ) ) |
| 97 | 1 2 3 4 5 6 7 8 9 | bcthlem3 | ⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ∧ ( 𝑚 + 1 ) ∈ ℕ ) → 𝑥 ∈ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) |
| 98 | 19 97 | syl3an3 | ⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ∧ 𝑚 ∈ ℕ ) → 𝑥 ∈ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) ) |
| 99 | 96 98 | sseldd | ⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ∧ 𝑚 ∈ ℕ ) → 𝑥 ∈ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑚 ) ) ∖ ( 𝑀 ‘ 𝑚 ) ) ) |
| 100 | 99 | eldifbd | ⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ∧ 𝑚 ∈ ℕ ) → ¬ 𝑥 ∈ ( 𝑀 ‘ 𝑚 ) ) |
| 101 | 100 | 3expa | ⊢ ( ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ∧ 𝑚 ∈ ℕ ) → ¬ 𝑥 ∈ ( 𝑀 ‘ 𝑚 ) ) |
| 102 | 101 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ∀ 𝑚 ∈ ℕ ¬ 𝑥 ∈ ( 𝑀 ‘ 𝑚 ) ) |
| 103 | eluni2 | ⊢ ( 𝑥 ∈ ∪ ran 𝑀 ↔ ∃ 𝑦 ∈ ran 𝑀 𝑥 ∈ 𝑦 ) | |
| 104 | 4 | ffnd | ⊢ ( 𝜑 → 𝑀 Fn ℕ ) |
| 105 | eleq2 | ⊢ ( 𝑦 = ( 𝑀 ‘ 𝑚 ) → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ ( 𝑀 ‘ 𝑚 ) ) ) | |
| 106 | 105 | rexrn | ⊢ ( 𝑀 Fn ℕ → ( ∃ 𝑦 ∈ ran 𝑀 𝑥 ∈ 𝑦 ↔ ∃ 𝑚 ∈ ℕ 𝑥 ∈ ( 𝑀 ‘ 𝑚 ) ) ) |
| 107 | 104 106 | syl | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ran 𝑀 𝑥 ∈ 𝑦 ↔ ∃ 𝑚 ∈ ℕ 𝑥 ∈ ( 𝑀 ‘ 𝑚 ) ) ) |
| 108 | 103 107 | bitrid | ⊢ ( 𝜑 → ( 𝑥 ∈ ∪ ran 𝑀 ↔ ∃ 𝑚 ∈ ℕ 𝑥 ∈ ( 𝑀 ‘ 𝑚 ) ) ) |
| 109 | 108 | notbid | ⊢ ( 𝜑 → ( ¬ 𝑥 ∈ ∪ ran 𝑀 ↔ ¬ ∃ 𝑚 ∈ ℕ 𝑥 ∈ ( 𝑀 ‘ 𝑚 ) ) ) |
| 110 | ralnex | ⊢ ( ∀ 𝑚 ∈ ℕ ¬ 𝑥 ∈ ( 𝑀 ‘ 𝑚 ) ↔ ¬ ∃ 𝑚 ∈ ℕ 𝑥 ∈ ( 𝑀 ‘ 𝑚 ) ) | |
| 111 | 109 110 | bitr4di | ⊢ ( 𝜑 → ( ¬ 𝑥 ∈ ∪ ran 𝑀 ↔ ∀ 𝑚 ∈ ℕ ¬ 𝑥 ∈ ( 𝑀 ‘ 𝑚 ) ) ) |
| 112 | 111 | biimpar | ⊢ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ ¬ 𝑥 ∈ ( 𝑀 ‘ 𝑚 ) ) → ¬ 𝑥 ∈ ∪ ran 𝑀 ) |
| 113 | 102 112 | syldan | ⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ¬ 𝑥 ∈ ∪ ran 𝑀 ) |
| 114 | 72 113 | eldifd | ⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ ( ( 𝐶 ( ball ‘ 𝐷 ) 𝑅 ) ∖ ∪ ran 𝑀 ) ) |
| 115 | 114 | ne0d | ⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( ( 𝐶 ( ball ‘ 𝐷 ) 𝑅 ) ∖ ∪ ran 𝑀 ) ≠ ∅ ) |
| 116 | 64 115 | exlimddv | ⊢ ( 𝜑 → ( ( 𝐶 ( ball ‘ 𝐷 ) 𝑅 ) ∖ ∪ ran 𝑀 ) ≠ ∅ ) |