This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The 1st function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fo1st | ⊢ 1st : V –onto→ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 2 | 1 | dmex | ⊢ dom { 𝑥 } ∈ V |
| 3 | 2 | uniex | ⊢ ∪ dom { 𝑥 } ∈ V |
| 4 | df-1st | ⊢ 1st = ( 𝑥 ∈ V ↦ ∪ dom { 𝑥 } ) | |
| 5 | 3 4 | fnmpti | ⊢ 1st Fn V |
| 6 | 4 | rnmpt | ⊢ ran 1st = { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = ∪ dom { 𝑥 } } |
| 7 | vex | ⊢ 𝑦 ∈ V | |
| 8 | opex | ⊢ 〈 𝑦 , 𝑦 〉 ∈ V | |
| 9 | 7 7 | op1sta | ⊢ ∪ dom { 〈 𝑦 , 𝑦 〉 } = 𝑦 |
| 10 | 9 | eqcomi | ⊢ 𝑦 = ∪ dom { 〈 𝑦 , 𝑦 〉 } |
| 11 | sneq | ⊢ ( 𝑥 = 〈 𝑦 , 𝑦 〉 → { 𝑥 } = { 〈 𝑦 , 𝑦 〉 } ) | |
| 12 | 11 | dmeqd | ⊢ ( 𝑥 = 〈 𝑦 , 𝑦 〉 → dom { 𝑥 } = dom { 〈 𝑦 , 𝑦 〉 } ) |
| 13 | 12 | unieqd | ⊢ ( 𝑥 = 〈 𝑦 , 𝑦 〉 → ∪ dom { 𝑥 } = ∪ dom { 〈 𝑦 , 𝑦 〉 } ) |
| 14 | 13 | rspceeqv | ⊢ ( ( 〈 𝑦 , 𝑦 〉 ∈ V ∧ 𝑦 = ∪ dom { 〈 𝑦 , 𝑦 〉 } ) → ∃ 𝑥 ∈ V 𝑦 = ∪ dom { 𝑥 } ) |
| 15 | 8 10 14 | mp2an | ⊢ ∃ 𝑥 ∈ V 𝑦 = ∪ dom { 𝑥 } |
| 16 | 7 15 | 2th | ⊢ ( 𝑦 ∈ V ↔ ∃ 𝑥 ∈ V 𝑦 = ∪ dom { 𝑥 } ) |
| 17 | 16 | eqabi | ⊢ V = { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = ∪ dom { 𝑥 } } |
| 18 | 6 17 | eqtr4i | ⊢ ran 1st = V |
| 19 | df-fo | ⊢ ( 1st : V –onto→ V ↔ ( 1st Fn V ∧ ran 1st = V ) ) | |
| 20 | 5 18 19 | mpbir2an | ⊢ 1st : V –onto→ V |