This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for bcth . The limit point of the centers in the sequence is in the intersection of every ball in the sequence. (Contributed by Mario Carneiro, 7-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bcth.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| bcthlem.4 | ⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) | ||
| bcthlem.5 | ⊢ 𝐹 = ( 𝑘 ∈ ℕ , 𝑧 ∈ ( 𝑋 × ℝ+ ) ↦ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) } ) | ||
| bcthlem.6 | ⊢ ( 𝜑 → 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) | ||
| bcthlem.7 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| bcthlem.8 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | ||
| bcthlem.9 | ⊢ ( 𝜑 → 𝑔 : ℕ ⟶ ( 𝑋 × ℝ+ ) ) | ||
| bcthlem.10 | ⊢ ( 𝜑 → ( 𝑔 ‘ 1 ) = 〈 𝐶 , 𝑅 〉 ) | ||
| bcthlem.11 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) | ||
| Assertion | bcthlem3 | ⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ∧ 𝐴 ∈ ℕ ) → 𝑥 ∈ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bcth.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | bcthlem.4 | ⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) | |
| 3 | bcthlem.5 | ⊢ 𝐹 = ( 𝑘 ∈ ℕ , 𝑧 ∈ ( 𝑋 × ℝ+ ) ↦ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑟 < ( 1 / 𝑘 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 𝑟 ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ 𝑧 ) ∖ ( 𝑀 ‘ 𝑘 ) ) ) ) } ) | |
| 4 | bcthlem.6 | ⊢ ( 𝜑 → 𝑀 : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) | |
| 5 | bcthlem.7 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 6 | bcthlem.8 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | |
| 7 | bcthlem.9 | ⊢ ( 𝜑 → 𝑔 : ℕ ⟶ ( 𝑋 × ℝ+ ) ) | |
| 8 | bcthlem.10 | ⊢ ( 𝜑 → ( 𝑔 ‘ 1 ) = 〈 𝐶 , 𝑅 〉 ) | |
| 9 | bcthlem.11 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) | |
| 10 | fvoveq1 | ⊢ ( 𝑘 = 𝐴 → ( 𝑔 ‘ ( 𝑘 + 1 ) ) = ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) | |
| 11 | id | ⊢ ( 𝑘 = 𝐴 → 𝑘 = 𝐴 ) | |
| 12 | fveq2 | ⊢ ( 𝑘 = 𝐴 → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ 𝐴 ) ) | |
| 13 | 11 12 | oveq12d | ⊢ ( 𝑘 = 𝐴 → ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) = ( 𝐴 𝐹 ( 𝑔 ‘ 𝐴 ) ) ) |
| 14 | 10 13 | eleq12d | ⊢ ( 𝑘 = 𝐴 → ( ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ↔ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ∈ ( 𝐴 𝐹 ( 𝑔 ‘ 𝐴 ) ) ) ) |
| 15 | 14 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ∧ 𝐴 ∈ ℕ ) → ( 𝑔 ‘ ( 𝐴 + 1 ) ) ∈ ( 𝐴 𝐹 ( 𝑔 ‘ 𝐴 ) ) ) |
| 16 | 9 15 | sylan | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 𝑔 ‘ ( 𝐴 + 1 ) ) ∈ ( 𝐴 𝐹 ( 𝑔 ‘ 𝐴 ) ) ) |
| 17 | 7 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 𝑔 ‘ 𝐴 ) ∈ ( 𝑋 × ℝ+ ) ) |
| 18 | 1 2 3 | bcthlem1 | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ℕ ∧ ( 𝑔 ‘ 𝐴 ) ∈ ( 𝑋 × ℝ+ ) ) ) → ( ( 𝑔 ‘ ( 𝐴 + 1 ) ) ∈ ( 𝐴 𝐹 ( 𝑔 ‘ 𝐴 ) ) ↔ ( ( 𝑔 ‘ ( 𝐴 + 1 ) ) ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) ) |
| 19 | 18 | expr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( ( 𝑔 ‘ 𝐴 ) ∈ ( 𝑋 × ℝ+ ) → ( ( 𝑔 ‘ ( 𝐴 + 1 ) ) ∈ ( 𝐴 𝐹 ( 𝑔 ‘ 𝐴 ) ) ↔ ( ( 𝑔 ‘ ( 𝐴 + 1 ) ) ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) ) ) |
| 20 | 17 19 | mpd | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( ( 𝑔 ‘ ( 𝐴 + 1 ) ) ∈ ( 𝐴 𝐹 ( 𝑔 ‘ 𝐴 ) ) ↔ ( ( 𝑔 ‘ ( 𝐴 + 1 ) ) ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) ) |
| 21 | 16 20 | mpbid | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( ( 𝑔 ‘ ( 𝐴 + 1 ) ) ∈ ( 𝑋 × ℝ+ ) ∧ ( 2nd ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) < ( 1 / 𝐴 ) ∧ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 22 | 21 | simp3d | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) ) ⊆ ( ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) ) ∖ ( 𝑀 ‘ 𝐴 ) ) ) |
| 23 | 22 | difss2d | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) ) ⊆ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) ) ) |
| 24 | 23 | 3adant2 | ⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ∧ 𝐴 ∈ ℕ ) → ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) ) ⊆ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) ) ) |
| 25 | peano2nn | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 + 1 ) ∈ ℕ ) | |
| 26 | cmetmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 27 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 28 | 2 26 27 | 3syl | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 29 | 1 2 3 4 5 6 7 8 9 | bcthlem2 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ⊆ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝑛 ) ) ) |
| 30 | 28 7 29 1 | caublcls | ⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ∧ ( 𝐴 + 1 ) ∈ ℕ ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) ) ) |
| 31 | 25 30 | syl3an3 | ⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ∧ 𝐴 ∈ ℕ ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ ( 𝐴 + 1 ) ) ) ) ) |
| 32 | 24 31 | sseldd | ⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑔 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ∧ 𝐴 ∈ ℕ ) → 𝑥 ∈ ( ( ball ‘ 𝐷 ) ‘ ( 𝑔 ‘ 𝐴 ) ) ) |