This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An injection maps bases to bases. (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qtopcmp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | basqtop | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( 𝐽 qTop 𝐹 ) ∈ TopBases ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopcmp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | f1ofo | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 : 𝑋 –onto→ 𝑌 ) | |
| 3 | 1 | elqtop2 | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 4 | 1 | elqtop2 | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝑦 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 5 | 3 4 | anbi12d | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 qTop 𝐹 ) ) ↔ ( ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) ) |
| 6 | 2 5 | sylan2 | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 qTop 𝐹 ) ) ↔ ( ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) ) |
| 7 | simpl1l | ⊢ ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → 𝐽 ∈ TopBases ) | |
| 8 | simpl2r | ⊢ ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) | |
| 9 | simpl3r | ⊢ ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) | |
| 10 | simpl1r | ⊢ ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) | |
| 11 | f1ocnv | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) | |
| 12 | f1ofn | ⊢ ( ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 → ◡ 𝐹 Fn 𝑌 ) | |
| 13 | 10 11 12 | 3syl | ⊢ ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → ◡ 𝐹 Fn 𝑌 ) |
| 14 | simpl2l | ⊢ ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → 𝑥 ⊆ 𝑌 ) | |
| 15 | simpr | ⊢ ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) | |
| 16 | 15 | elin1d | ⊢ ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → 𝑧 ∈ 𝑥 ) |
| 17 | fnfvima | ⊢ ( ( ◡ 𝐹 Fn 𝑌 ∧ 𝑥 ⊆ 𝑌 ∧ 𝑧 ∈ 𝑥 ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( ◡ 𝐹 “ 𝑥 ) ) | |
| 18 | 13 14 16 17 | syl3anc | ⊢ ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( ◡ 𝐹 “ 𝑥 ) ) |
| 19 | simpl3l | ⊢ ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → 𝑦 ⊆ 𝑌 ) | |
| 20 | 15 | elin2d | ⊢ ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → 𝑧 ∈ 𝑦 ) |
| 21 | fnfvima | ⊢ ( ( ◡ 𝐹 Fn 𝑌 ∧ 𝑦 ⊆ 𝑌 ∧ 𝑧 ∈ 𝑦 ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( ◡ 𝐹 “ 𝑦 ) ) | |
| 22 | 13 19 20 21 | syl3anc | ⊢ ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( ◡ 𝐹 “ 𝑦 ) ) |
| 23 | 18 22 | elind | ⊢ ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 24 | basis2 | ⊢ ( ( ( 𝐽 ∈ TopBases ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ∧ ( ◡ 𝐹 ‘ 𝑧 ) ∈ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) → ∃ 𝑤 ∈ 𝐽 ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) | |
| 25 | 7 8 9 23 24 | syl22anc | ⊢ ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → ∃ 𝑤 ∈ 𝐽 ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) |
| 26 | 10 | adantr | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |
| 27 | inss1 | ⊢ ( 𝑥 ∩ 𝑦 ) ⊆ 𝑥 | |
| 28 | simp2l | ⊢ ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → 𝑥 ⊆ 𝑌 ) | |
| 29 | 27 28 | sstrid | ⊢ ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( 𝑥 ∩ 𝑦 ) ⊆ 𝑌 ) |
| 30 | 29 | sselda | ⊢ ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → 𝑧 ∈ 𝑌 ) |
| 31 | 30 | adantr | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → 𝑧 ∈ 𝑌 ) |
| 32 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝑧 ∈ 𝑌 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = 𝑧 ) | |
| 33 | 26 31 32 | syl2anc | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) = 𝑧 ) |
| 34 | f1ofn | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 Fn 𝑋 ) | |
| 35 | 26 34 | syl | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → 𝐹 Fn 𝑋 ) |
| 36 | simprrr | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) | |
| 37 | inss1 | ⊢ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ⊆ ( ◡ 𝐹 “ 𝑥 ) | |
| 38 | 36 37 | sstrdi | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → 𝑤 ⊆ ( ◡ 𝐹 “ 𝑥 ) ) |
| 39 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝑥 ) ⊆ dom 𝐹 | |
| 40 | f1odm | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → dom 𝐹 = 𝑋 ) | |
| 41 | 26 40 | syl | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → dom 𝐹 = 𝑋 ) |
| 42 | 39 41 | sseqtrid | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → ( ◡ 𝐹 “ 𝑥 ) ⊆ 𝑋 ) |
| 43 | 38 42 | sstrd | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → 𝑤 ⊆ 𝑋 ) |
| 44 | simprrl | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ) | |
| 45 | fnfvima | ⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑤 ⊆ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑤 ) ) | |
| 46 | 35 43 44 45 | syl3anc | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑤 ) ) |
| 47 | 33 46 | eqeltrrd | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → 𝑧 ∈ ( 𝐹 “ 𝑤 ) ) |
| 48 | imassrn | ⊢ ( 𝐹 “ 𝑤 ) ⊆ ran 𝐹 | |
| 49 | 26 2 | syl | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → 𝐹 : 𝑋 –onto→ 𝑌 ) |
| 50 | forn | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → ran 𝐹 = 𝑌 ) | |
| 51 | 49 50 | syl | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → ran 𝐹 = 𝑌 ) |
| 52 | 48 51 | sseqtrid | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → ( 𝐹 “ 𝑤 ) ⊆ 𝑌 ) |
| 53 | f1of1 | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 : 𝑋 –1-1→ 𝑌 ) | |
| 54 | 26 53 | syl | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
| 55 | f1imacnv | ⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝑤 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑤 ) ) = 𝑤 ) | |
| 56 | 54 43 55 | syl2anc | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑤 ) ) = 𝑤 ) |
| 57 | simprl | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → 𝑤 ∈ 𝐽 ) | |
| 58 | 56 57 | eqeltrd | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑤 ) ) ∈ 𝐽 ) |
| 59 | 7 | adantr | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → 𝐽 ∈ TopBases ) |
| 60 | 1 | elqtop2 | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( ( 𝐹 “ 𝑤 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑌 ∧ ( ◡ 𝐹 “ ( 𝐹 “ 𝑤 ) ) ∈ 𝐽 ) ) ) |
| 61 | 59 49 60 | syl2anc | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → ( ( 𝐹 “ 𝑤 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑌 ∧ ( ◡ 𝐹 “ ( 𝐹 “ 𝑤 ) ) ∈ 𝐽 ) ) ) |
| 62 | 52 58 61 | mpbir2and | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → ( 𝐹 “ 𝑤 ) ∈ ( 𝐽 qTop 𝐹 ) ) |
| 63 | fnfun | ⊢ ( 𝐹 Fn 𝑋 → Fun 𝐹 ) | |
| 64 | inpreima | ⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ( 𝑥 ∩ 𝑦 ) ) = ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) | |
| 65 | 35 63 64 | 3syl | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → ( ◡ 𝐹 “ ( 𝑥 ∩ 𝑦 ) ) = ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 66 | 36 65 | sseqtrrd | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → 𝑤 ⊆ ( ◡ 𝐹 “ ( 𝑥 ∩ 𝑦 ) ) ) |
| 67 | 35 63 | syl | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → Fun 𝐹 ) |
| 68 | 38 39 | sstrdi | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → 𝑤 ⊆ dom 𝐹 ) |
| 69 | funimass3 | ⊢ ( ( Fun 𝐹 ∧ 𝑤 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝑤 ) ⊆ ( 𝑥 ∩ 𝑦 ) ↔ 𝑤 ⊆ ( ◡ 𝐹 “ ( 𝑥 ∩ 𝑦 ) ) ) ) | |
| 70 | 67 68 69 | syl2anc | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → ( ( 𝐹 “ 𝑤 ) ⊆ ( 𝑥 ∩ 𝑦 ) ↔ 𝑤 ⊆ ( ◡ 𝐹 “ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 71 | 66 70 | mpbird | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → ( 𝐹 “ 𝑤 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 72 | vex | ⊢ 𝑥 ∈ V | |
| 73 | 72 | inex1 | ⊢ ( 𝑥 ∩ 𝑦 ) ∈ V |
| 74 | 73 | elpw2 | ⊢ ( ( 𝐹 “ 𝑤 ) ∈ 𝒫 ( 𝑥 ∩ 𝑦 ) ↔ ( 𝐹 “ 𝑤 ) ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 75 | 71 74 | sylibr | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → ( 𝐹 “ 𝑤 ) ∈ 𝒫 ( 𝑥 ∩ 𝑦 ) ) |
| 76 | 62 75 | elind | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → ( 𝐹 “ 𝑤 ) ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 77 | elunii | ⊢ ( ( 𝑧 ∈ ( 𝐹 “ 𝑤 ) ∧ ( 𝐹 “ 𝑤 ) ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) → 𝑧 ∈ ∪ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) | |
| 78 | 47 76 77 | syl2anc | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ∧ ( 𝑤 ∈ 𝐽 ∧ ( ( ◡ 𝐹 ‘ 𝑧 ) ∈ 𝑤 ∧ 𝑤 ⊆ ( ( ◡ 𝐹 “ 𝑥 ) ∩ ( ◡ 𝐹 “ 𝑦 ) ) ) ) ) → 𝑧 ∈ ∪ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 79 | 25 78 | rexlimddv | ⊢ ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ∧ 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) → 𝑧 ∈ ∪ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 80 | 79 | ex | ⊢ ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) → 𝑧 ∈ ∪ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 81 | 80 | ssrdv | ⊢ ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 82 | 81 | 3expib | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( ( ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ∧ ( 𝑦 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) → ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 83 | 6 82 | sylbid | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 qTop 𝐹 ) ) → ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 84 | 83 | ralrimivv | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ∀ 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ∀ 𝑦 ∈ ( 𝐽 qTop 𝐹 ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 85 | ovex | ⊢ ( 𝐽 qTop 𝐹 ) ∈ V | |
| 86 | isbasisg | ⊢ ( ( 𝐽 qTop 𝐹 ) ∈ V → ( ( 𝐽 qTop 𝐹 ) ∈ TopBases ↔ ∀ 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ∀ 𝑦 ∈ ( 𝐽 qTop 𝐹 ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) | |
| 87 | 85 86 | ax-mp | ⊢ ( ( 𝐽 qTop 𝐹 ) ∈ TopBases ↔ ∀ 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ∀ 𝑦 ∈ ( 𝐽 qTop 𝐹 ) ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 88 | 84 87 | sylibr | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( 𝐽 qTop 𝐹 ) ∈ TopBases ) |