This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Preimage of an image. (Contributed by NM, 30-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1imacnv | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐶 ) ) = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resima | ⊢ ( ( ◡ 𝐹 ↾ ( 𝐹 “ 𝐶 ) ) “ ( 𝐹 “ 𝐶 ) ) = ( ◡ 𝐹 “ ( 𝐹 “ 𝐶 ) ) | |
| 2 | df-f1 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ Fun ◡ 𝐹 ) ) | |
| 3 | 2 | simprbi | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → Fun ◡ 𝐹 ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → Fun ◡ 𝐹 ) |
| 5 | funcnvres | ⊢ ( Fun ◡ 𝐹 → ◡ ( 𝐹 ↾ 𝐶 ) = ( ◡ 𝐹 ↾ ( 𝐹 “ 𝐶 ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ◡ ( 𝐹 ↾ 𝐶 ) = ( ◡ 𝐹 ↾ ( 𝐹 “ 𝐶 ) ) ) |
| 7 | 6 | imaeq1d | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( ◡ ( 𝐹 ↾ 𝐶 ) “ ( 𝐹 “ 𝐶 ) ) = ( ( ◡ 𝐹 ↾ ( 𝐹 “ 𝐶 ) ) “ ( 𝐹 “ 𝐶 ) ) ) |
| 8 | f1ores | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹 “ 𝐶 ) ) | |
| 9 | f1ocnv | ⊢ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹 “ 𝐶 ) → ◡ ( 𝐹 ↾ 𝐶 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐶 ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ◡ ( 𝐹 ↾ 𝐶 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐶 ) |
| 11 | imadmrn | ⊢ ( ◡ ( 𝐹 ↾ 𝐶 ) “ dom ◡ ( 𝐹 ↾ 𝐶 ) ) = ran ◡ ( 𝐹 ↾ 𝐶 ) | |
| 12 | f1odm | ⊢ ( ◡ ( 𝐹 ↾ 𝐶 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐶 → dom ◡ ( 𝐹 ↾ 𝐶 ) = ( 𝐹 “ 𝐶 ) ) | |
| 13 | 12 | imaeq2d | ⊢ ( ◡ ( 𝐹 ↾ 𝐶 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐶 → ( ◡ ( 𝐹 ↾ 𝐶 ) “ dom ◡ ( 𝐹 ↾ 𝐶 ) ) = ( ◡ ( 𝐹 ↾ 𝐶 ) “ ( 𝐹 “ 𝐶 ) ) ) |
| 14 | f1ofo | ⊢ ( ◡ ( 𝐹 ↾ 𝐶 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐶 → ◡ ( 𝐹 ↾ 𝐶 ) : ( 𝐹 “ 𝐶 ) –onto→ 𝐶 ) | |
| 15 | forn | ⊢ ( ◡ ( 𝐹 ↾ 𝐶 ) : ( 𝐹 “ 𝐶 ) –onto→ 𝐶 → ran ◡ ( 𝐹 ↾ 𝐶 ) = 𝐶 ) | |
| 16 | 14 15 | syl | ⊢ ( ◡ ( 𝐹 ↾ 𝐶 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐶 → ran ◡ ( 𝐹 ↾ 𝐶 ) = 𝐶 ) |
| 17 | 11 13 16 | 3eqtr3a | ⊢ ( ◡ ( 𝐹 ↾ 𝐶 ) : ( 𝐹 “ 𝐶 ) –1-1-onto→ 𝐶 → ( ◡ ( 𝐹 ↾ 𝐶 ) “ ( 𝐹 “ 𝐶 ) ) = 𝐶 ) |
| 18 | 10 17 | syl | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( ◡ ( 𝐹 ↾ 𝐶 ) “ ( 𝐹 “ 𝐶 ) ) = 𝐶 ) |
| 19 | 7 18 | eqtr3d | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( ( ◡ 𝐹 ↾ ( 𝐹 “ 𝐶 ) ) “ ( 𝐹 “ 𝐶 ) ) = 𝐶 ) |
| 20 | 1 19 | eqtr3id | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐶 ) ) = 𝐶 ) |