This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a basis. (Contributed by NM, 17-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | basis2 | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝐷 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝐶 ∩ 𝐷 ) ) ) → ∃ 𝑥 ∈ 𝐵 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isbasis2g | ⊢ ( 𝐵 ∈ TopBases → ( 𝐵 ∈ TopBases ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ ( 𝑦 ∩ 𝑧 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) ) ) | |
| 2 | 1 | ibi | ⊢ ( 𝐵 ∈ TopBases → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ ( 𝑦 ∩ 𝑧 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) ) |
| 3 | ineq1 | ⊢ ( 𝑦 = 𝐶 → ( 𝑦 ∩ 𝑧 ) = ( 𝐶 ∩ 𝑧 ) ) | |
| 4 | sseq2 | ⊢ ( ( 𝑦 ∩ 𝑧 ) = ( 𝐶 ∩ 𝑧 ) → ( 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ↔ 𝑥 ⊆ ( 𝐶 ∩ 𝑧 ) ) ) | |
| 5 | 4 | anbi2d | ⊢ ( ( 𝑦 ∩ 𝑧 ) = ( 𝐶 ∩ 𝑧 ) → ( ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) ↔ ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝑧 ) ) ) ) |
| 6 | 5 | rexbidv | ⊢ ( ( 𝑦 ∩ 𝑧 ) = ( 𝐶 ∩ 𝑧 ) → ( ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝑧 ) ) ) ) |
| 7 | 6 | raleqbi1dv | ⊢ ( ( 𝑦 ∩ 𝑧 ) = ( 𝐶 ∩ 𝑧 ) → ( ∀ 𝑤 ∈ ( 𝑦 ∩ 𝑧 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) ↔ ∀ 𝑤 ∈ ( 𝐶 ∩ 𝑧 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝑧 ) ) ) ) |
| 8 | 3 7 | syl | ⊢ ( 𝑦 = 𝐶 → ( ∀ 𝑤 ∈ ( 𝑦 ∩ 𝑧 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) ↔ ∀ 𝑤 ∈ ( 𝐶 ∩ 𝑧 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝑧 ) ) ) ) |
| 9 | ineq2 | ⊢ ( 𝑧 = 𝐷 → ( 𝐶 ∩ 𝑧 ) = ( 𝐶 ∩ 𝐷 ) ) | |
| 10 | sseq2 | ⊢ ( ( 𝐶 ∩ 𝑧 ) = ( 𝐶 ∩ 𝐷 ) → ( 𝑥 ⊆ ( 𝐶 ∩ 𝑧 ) ↔ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) | |
| 11 | 10 | anbi2d | ⊢ ( ( 𝐶 ∩ 𝑧 ) = ( 𝐶 ∩ 𝐷 ) → ( ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝑧 ) ) ↔ ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) ) |
| 12 | 11 | rexbidv | ⊢ ( ( 𝐶 ∩ 𝑧 ) = ( 𝐶 ∩ 𝐷 ) → ( ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝑧 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) ) |
| 13 | 12 | raleqbi1dv | ⊢ ( ( 𝐶 ∩ 𝑧 ) = ( 𝐶 ∩ 𝐷 ) → ( ∀ 𝑤 ∈ ( 𝐶 ∩ 𝑧 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝑧 ) ) ↔ ∀ 𝑤 ∈ ( 𝐶 ∩ 𝐷 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) ) |
| 14 | 9 13 | syl | ⊢ ( 𝑧 = 𝐷 → ( ∀ 𝑤 ∈ ( 𝐶 ∩ 𝑧 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝑧 ) ) ↔ ∀ 𝑤 ∈ ( 𝐶 ∩ 𝐷 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) ) |
| 15 | 8 14 | rspc2v | ⊢ ( ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ ( 𝑦 ∩ 𝑧 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) → ∀ 𝑤 ∈ ( 𝐶 ∩ 𝐷 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) ) |
| 16 | eleq1 | ⊢ ( 𝑤 = 𝐴 → ( 𝑤 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) ) | |
| 17 | 16 | anbi1d | ⊢ ( 𝑤 = 𝐴 → ( ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ↔ ( 𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) ) |
| 18 | 17 | rexbidv | ⊢ ( 𝑤 = 𝐴 → ( ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) ) |
| 19 | 18 | rspccv | ⊢ ( ∀ 𝑤 ∈ ( 𝐶 ∩ 𝐷 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) → ( 𝐴 ∈ ( 𝐶 ∩ 𝐷 ) → ∃ 𝑥 ∈ 𝐵 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) ) |
| 20 | 15 19 | syl6com | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ ( 𝑦 ∩ 𝑧 ) ∃ 𝑥 ∈ 𝐵 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝑦 ∩ 𝑧 ) ) → ( ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐴 ∈ ( 𝐶 ∩ 𝐷 ) → ∃ 𝑥 ∈ 𝐵 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) ) ) |
| 21 | 2 20 | syl | ⊢ ( 𝐵 ∈ TopBases → ( ( 𝐶 ∈ 𝐵 ∧ 𝐷 ∈ 𝐵 ) → ( 𝐴 ∈ ( 𝐶 ∩ 𝐷 ) → ∃ 𝑥 ∈ 𝐵 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) ) ) |
| 22 | 21 | expd | ⊢ ( 𝐵 ∈ TopBases → ( 𝐶 ∈ 𝐵 → ( 𝐷 ∈ 𝐵 → ( 𝐴 ∈ ( 𝐶 ∩ 𝐷 ) → ∃ 𝑥 ∈ 𝐵 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) ) ) ) |
| 23 | 22 | imp43 | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝐷 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝐶 ∩ 𝐷 ) ) ) → ∃ 𝑥 ∈ 𝐵 ( 𝐴 ∈ 𝑥 ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝐷 ) ) ) |