This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the predicate "the set B is a basis for a topology". (Contributed by NM, 17-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isbasisg | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐵 ∈ TopBases ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 | ⊢ ( 𝑧 = 𝐵 → ( 𝑧 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) = ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) | |
| 2 | 1 | unieqd | ⊢ ( 𝑧 = 𝐵 → ∪ ( 𝑧 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) = ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) |
| 3 | 2 | sseq2d | ⊢ ( 𝑧 = 𝐵 → ( ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑧 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 4 | 3 | raleqbi1dv | ⊢ ( 𝑧 = 𝐵 → ( ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑧 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 5 | 4 | raleqbi1dv | ⊢ ( 𝑧 = 𝐵 → ( ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑧 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 6 | df-bases | ⊢ TopBases = { 𝑧 ∣ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝑧 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) } | |
| 7 | 5 6 | elab2g | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐵 ∈ TopBases ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∩ 𝑦 ) ⊆ ∪ ( 𝐵 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ) ) |