This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An injection maps generated topologies to each other. (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | qtopcmp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | tgqtop | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( ( topGen ‘ 𝐽 ) qTop 𝐹 ) = ( topGen ‘ ( 𝐽 qTop 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopcmp.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | f1ocnv | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) | |
| 3 | f1ofun | ⊢ ( ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 → Fun ◡ 𝐹 ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → Fun ◡ 𝐹 ) |
| 5 | 4 | ad2antlr | ⊢ ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) → Fun ◡ 𝐹 ) |
| 6 | simpr | ⊢ ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) → 𝑥 ⊆ 𝑌 ) | |
| 7 | df-rn | ⊢ ran 𝐹 = dom ◡ 𝐹 | |
| 8 | f1ofo | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 : 𝑋 –onto→ 𝑌 ) | |
| 9 | 8 | ad2antlr | ⊢ ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) → 𝐹 : 𝑋 –onto→ 𝑌 ) |
| 10 | forn | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → ran 𝐹 = 𝑌 ) | |
| 11 | 9 10 | syl | ⊢ ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) → ran 𝐹 = 𝑌 ) |
| 12 | 7 11 | eqtr3id | ⊢ ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) → dom ◡ 𝐹 = 𝑌 ) |
| 13 | 6 12 | sseqtrrd | ⊢ ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) → 𝑥 ⊆ dom ◡ 𝐹 ) |
| 14 | funimass4 | ⊢ ( ( Fun ◡ 𝐹 ∧ 𝑥 ⊆ dom ◡ 𝐹 ) → ( ( ◡ 𝐹 “ 𝑥 ) ⊆ ∪ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∀ 𝑦 ∈ 𝑥 ( ◡ 𝐹 ‘ 𝑦 ) ∈ ∪ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ) ) | |
| 15 | 5 13 14 | syl2anc | ⊢ ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) → ( ( ◡ 𝐹 “ 𝑥 ) ⊆ ∪ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∀ 𝑦 ∈ 𝑥 ( ◡ 𝐹 ‘ 𝑦 ) ∈ ∪ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
| 16 | dfss3 | ⊢ ( 𝑥 ⊆ ∪ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ) | |
| 17 | simprl | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ∧ 𝑦 ∈ 𝑧 ) ) → 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ) | |
| 18 | 17 | elin1d | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ∧ 𝑦 ∈ 𝑧 ) ) → 𝑧 ∈ ( 𝐽 qTop 𝐹 ) ) |
| 19 | 1 | elqtop2 | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝑧 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑧 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑧 ) ∈ 𝐽 ) ) ) |
| 20 | 8 19 | sylan2 | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( 𝑧 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑧 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑧 ) ∈ 𝐽 ) ) ) |
| 21 | 20 | ad3antrrr | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ∧ 𝑦 ∈ 𝑧 ) ) → ( 𝑧 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑧 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑧 ) ∈ 𝐽 ) ) ) |
| 22 | 18 21 | mpbid | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ∧ 𝑦 ∈ 𝑧 ) ) → ( 𝑧 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑧 ) ∈ 𝐽 ) ) |
| 23 | 22 | simprd | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ∧ 𝑦 ∈ 𝑧 ) ) → ( ◡ 𝐹 “ 𝑧 ) ∈ 𝐽 ) |
| 24 | 17 | elin2d | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ∧ 𝑦 ∈ 𝑧 ) ) → 𝑧 ∈ 𝒫 𝑥 ) |
| 25 | 24 | elpwid | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ∧ 𝑦 ∈ 𝑧 ) ) → 𝑧 ⊆ 𝑥 ) |
| 26 | imass2 | ⊢ ( 𝑧 ⊆ 𝑥 → ( ◡ 𝐹 “ 𝑧 ) ⊆ ( ◡ 𝐹 “ 𝑥 ) ) | |
| 27 | 25 26 | syl | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ∧ 𝑦 ∈ 𝑧 ) ) → ( ◡ 𝐹 “ 𝑧 ) ⊆ ( ◡ 𝐹 “ 𝑥 ) ) |
| 28 | 23 27 | elpwd | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ∧ 𝑦 ∈ 𝑧 ) ) → ( ◡ 𝐹 “ 𝑧 ) ∈ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) |
| 29 | 23 28 | elind | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ∧ 𝑦 ∈ 𝑧 ) ) → ( ◡ 𝐹 “ 𝑧 ) ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 30 | simp-4r | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ∧ 𝑦 ∈ 𝑧 ) ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) | |
| 31 | 30 2 | syl | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ∧ 𝑦 ∈ 𝑧 ) ) → ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) |
| 32 | f1ofn | ⊢ ( ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 → ◡ 𝐹 Fn 𝑌 ) | |
| 33 | 31 32 | syl | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ∧ 𝑦 ∈ 𝑧 ) ) → ◡ 𝐹 Fn 𝑌 ) |
| 34 | 6 | ad2antrr | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ∧ 𝑦 ∈ 𝑧 ) ) → 𝑥 ⊆ 𝑌 ) |
| 35 | 25 34 | sstrd | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ∧ 𝑦 ∈ 𝑧 ) ) → 𝑧 ⊆ 𝑌 ) |
| 36 | simprr | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ∧ 𝑦 ∈ 𝑧 ) ) → 𝑦 ∈ 𝑧 ) | |
| 37 | fnfvima | ⊢ ( ( ◡ 𝐹 Fn 𝑌 ∧ 𝑧 ⊆ 𝑌 ∧ 𝑦 ∈ 𝑧 ) → ( ◡ 𝐹 ‘ 𝑦 ) ∈ ( ◡ 𝐹 “ 𝑧 ) ) | |
| 38 | 33 35 36 37 | syl3anc | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ∧ 𝑦 ∈ 𝑧 ) ) → ( ◡ 𝐹 ‘ 𝑦 ) ∈ ( ◡ 𝐹 “ 𝑧 ) ) |
| 39 | eleq2 | ⊢ ( 𝑤 = ( ◡ 𝐹 “ 𝑧 ) → ( ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ↔ ( ◡ 𝐹 ‘ 𝑦 ) ∈ ( ◡ 𝐹 “ 𝑧 ) ) ) | |
| 40 | 39 | rspcev | ⊢ ( ( ( ◡ 𝐹 “ 𝑧 ) ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ ( ◡ 𝐹 “ 𝑧 ) ) → ∃ 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) |
| 41 | 29 38 40 | syl2anc | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ∧ 𝑦 ∈ 𝑧 ) ) → ∃ 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) |
| 42 | 41 | rexlimdvaa | ⊢ ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) → ( ∃ 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) 𝑦 ∈ 𝑧 → ∃ 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) |
| 43 | simp-4r | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) | |
| 44 | f1ofun | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → Fun 𝐹 ) | |
| 45 | 43 44 | syl | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) → Fun 𝐹 ) |
| 46 | simprl | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) → 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ) | |
| 47 | 46 | elin2d | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) → 𝑤 ∈ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) |
| 48 | 47 | elpwid | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) → 𝑤 ⊆ ( ◡ 𝐹 “ 𝑥 ) ) |
| 49 | funimass2 | ⊢ ( ( Fun 𝐹 ∧ 𝑤 ⊆ ( ◡ 𝐹 “ 𝑥 ) ) → ( 𝐹 “ 𝑤 ) ⊆ 𝑥 ) | |
| 50 | 45 48 49 | syl2anc | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) → ( 𝐹 “ 𝑤 ) ⊆ 𝑥 ) |
| 51 | 6 | ad2antrr | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) → 𝑥 ⊆ 𝑌 ) |
| 52 | 50 51 | sstrd | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) → ( 𝐹 “ 𝑤 ) ⊆ 𝑌 ) |
| 53 | f1of1 | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 : 𝑋 –1-1→ 𝑌 ) | |
| 54 | 43 53 | syl | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
| 55 | 46 | elin1d | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) → 𝑤 ∈ 𝐽 ) |
| 56 | elssuni | ⊢ ( 𝑤 ∈ 𝐽 → 𝑤 ⊆ ∪ 𝐽 ) | |
| 57 | 56 1 | sseqtrrdi | ⊢ ( 𝑤 ∈ 𝐽 → 𝑤 ⊆ 𝑋 ) |
| 58 | 55 57 | syl | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) → 𝑤 ⊆ 𝑋 ) |
| 59 | f1imacnv | ⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌 ∧ 𝑤 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑤 ) ) = 𝑤 ) | |
| 60 | 54 58 59 | syl2anc | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑤 ) ) = 𝑤 ) |
| 61 | 60 55 | eqeltrd | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑤 ) ) ∈ 𝐽 ) |
| 62 | 1 | elqtop2 | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( ( 𝐹 “ 𝑤 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑌 ∧ ( ◡ 𝐹 “ ( 𝐹 “ 𝑤 ) ) ∈ 𝐽 ) ) ) |
| 63 | 8 62 | sylan2 | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( ( 𝐹 “ 𝑤 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑌 ∧ ( ◡ 𝐹 “ ( 𝐹 “ 𝑤 ) ) ∈ 𝐽 ) ) ) |
| 64 | 63 | ad3antrrr | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) → ( ( 𝐹 “ 𝑤 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝐹 “ 𝑤 ) ⊆ 𝑌 ∧ ( ◡ 𝐹 “ ( 𝐹 “ 𝑤 ) ) ∈ 𝐽 ) ) ) |
| 65 | 52 61 64 | mpbir2and | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) → ( 𝐹 “ 𝑤 ) ∈ ( 𝐽 qTop 𝐹 ) ) |
| 66 | vex | ⊢ 𝑥 ∈ V | |
| 67 | 66 | elpw2 | ⊢ ( ( 𝐹 “ 𝑤 ) ∈ 𝒫 𝑥 ↔ ( 𝐹 “ 𝑤 ) ⊆ 𝑥 ) |
| 68 | 50 67 | sylibr | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) → ( 𝐹 “ 𝑤 ) ∈ 𝒫 𝑥 ) |
| 69 | 65 68 | elind | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) → ( 𝐹 “ 𝑤 ) ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ) |
| 70 | 6 | sselda | ⊢ ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑌 ) |
| 71 | 70 | adantr | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) → 𝑦 ∈ 𝑌 ) |
| 72 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) = 𝑦 ) | |
| 73 | 43 71 72 | syl2anc | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) = 𝑦 ) |
| 74 | f1ofn | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 Fn 𝑋 ) | |
| 75 | 74 | adantl | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → 𝐹 Fn 𝑋 ) |
| 76 | 75 | ad3antrrr | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) → 𝐹 Fn 𝑋 ) |
| 77 | simprr | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) → ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) | |
| 78 | fnfvima | ⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑤 ⊆ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ ( 𝐹 “ 𝑤 ) ) | |
| 79 | 76 58 77 78 | syl3anc | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ ( 𝐹 “ 𝑤 ) ) |
| 80 | 73 79 | eqeltrrd | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) → 𝑦 ∈ ( 𝐹 “ 𝑤 ) ) |
| 81 | eleq2 | ⊢ ( 𝑧 = ( 𝐹 “ 𝑤 ) → ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ ( 𝐹 “ 𝑤 ) ) ) | |
| 82 | 81 | rspcev | ⊢ ( ( ( 𝐹 “ 𝑤 ) ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ∧ 𝑦 ∈ ( 𝐹 “ 𝑤 ) ) → ∃ 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) 𝑦 ∈ 𝑧 ) |
| 83 | 69 80 82 | syl2anc | ⊢ ( ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) → ∃ 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) 𝑦 ∈ 𝑧 ) |
| 84 | 83 | rexlimdvaa | ⊢ ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) → ( ∃ 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 → ∃ 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) 𝑦 ∈ 𝑧 ) ) |
| 85 | 42 84 | impbid | ⊢ ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) → ( ∃ 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) 𝑦 ∈ 𝑧 ↔ ∃ 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) ) |
| 86 | eluni2 | ⊢ ( 𝑦 ∈ ∪ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ↔ ∃ 𝑧 ∈ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) 𝑦 ∈ 𝑧 ) | |
| 87 | eluni2 | ⊢ ( ( ◡ 𝐹 ‘ 𝑦 ) ∈ ∪ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑤 ∈ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑤 ) | |
| 88 | 85 86 87 | 3bitr4g | ⊢ ( ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑦 ∈ ∪ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ↔ ( ◡ 𝐹 ‘ 𝑦 ) ∈ ∪ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
| 89 | 88 | ralbidva | ⊢ ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) → ( ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ∪ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑥 ( ◡ 𝐹 ‘ 𝑦 ) ∈ ∪ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
| 90 | 16 89 | bitrid | ⊢ ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) → ( 𝑥 ⊆ ∪ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑥 ( ◡ 𝐹 ‘ 𝑦 ) ∈ ∪ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
| 91 | 15 90 | bitr4d | ⊢ ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) → ( ( ◡ 𝐹 “ 𝑥 ) ⊆ ∪ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ↔ 𝑥 ⊆ ∪ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ) ) |
| 92 | eltg | ⊢ ( 𝐽 ∈ TopBases → ( ( ◡ 𝐹 “ 𝑥 ) ∈ ( topGen ‘ 𝐽 ) ↔ ( ◡ 𝐹 “ 𝑥 ) ⊆ ∪ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ) ) | |
| 93 | 92 | ad2antrr | ⊢ ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) → ( ( ◡ 𝐹 “ 𝑥 ) ∈ ( topGen ‘ 𝐽 ) ↔ ( ◡ 𝐹 “ 𝑥 ) ⊆ ∪ ( 𝐽 ∩ 𝒫 ( ◡ 𝐹 “ 𝑥 ) ) ) ) |
| 94 | ovex | ⊢ ( 𝐽 qTop 𝐹 ) ∈ V | |
| 95 | eltg | ⊢ ( ( 𝐽 qTop 𝐹 ) ∈ V → ( 𝑥 ∈ ( topGen ‘ ( 𝐽 qTop 𝐹 ) ) ↔ 𝑥 ⊆ ∪ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ) ) | |
| 96 | 94 95 | mp1i | ⊢ ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) → ( 𝑥 ∈ ( topGen ‘ ( 𝐽 qTop 𝐹 ) ) ↔ 𝑥 ⊆ ∪ ( ( 𝐽 qTop 𝐹 ) ∩ 𝒫 𝑥 ) ) ) |
| 97 | 91 93 96 | 3bitr4d | ⊢ ( ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑥 ⊆ 𝑌 ) → ( ( ◡ 𝐹 “ 𝑥 ) ∈ ( topGen ‘ 𝐽 ) ↔ 𝑥 ∈ ( topGen ‘ ( 𝐽 qTop 𝐹 ) ) ) ) |
| 98 | 97 | pm5.32da | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( topGen ‘ 𝐽 ) ) ↔ ( 𝑥 ⊆ 𝑌 ∧ 𝑥 ∈ ( topGen ‘ ( 𝐽 qTop 𝐹 ) ) ) ) ) |
| 99 | tgtopon | ⊢ ( 𝐽 ∈ TopBases → ( topGen ‘ 𝐽 ) ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 100 | 99 | adantr | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( topGen ‘ 𝐽 ) ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 101 | 1 | fveq2i | ⊢ ( TopOn ‘ 𝑋 ) = ( TopOn ‘ ∪ 𝐽 ) |
| 102 | 100 101 | eleqtrrdi | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( topGen ‘ 𝐽 ) ∈ ( TopOn ‘ 𝑋 ) ) |
| 103 | 8 | adantl | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → 𝐹 : 𝑋 –onto→ 𝑌 ) |
| 104 | elqtop3 | ⊢ ( ( ( topGen ‘ 𝐽 ) ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝑥 ∈ ( ( topGen ‘ 𝐽 ) qTop 𝐹 ) ↔ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( topGen ‘ 𝐽 ) ) ) ) | |
| 105 | 102 103 104 | syl2anc | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( 𝑥 ∈ ( ( topGen ‘ 𝐽 ) qTop 𝐹 ) ↔ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ ( topGen ‘ 𝐽 ) ) ) ) |
| 106 | unitg | ⊢ ( ( 𝐽 qTop 𝐹 ) ∈ V → ∪ ( topGen ‘ ( 𝐽 qTop 𝐹 ) ) = ∪ ( 𝐽 qTop 𝐹 ) ) | |
| 107 | 94 106 | ax-mp | ⊢ ∪ ( topGen ‘ ( 𝐽 qTop 𝐹 ) ) = ∪ ( 𝐽 qTop 𝐹 ) |
| 108 | 1 | elqtop2 | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 109 | 8 108 | sylan2 | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) ↔ ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 110 | simpl | ⊢ ( ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) → 𝑥 ⊆ 𝑌 ) | |
| 111 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝑌 ↔ 𝑥 ⊆ 𝑌 ) | |
| 112 | 110 111 | sylibr | ⊢ ( ( 𝑥 ⊆ 𝑌 ∧ ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) → 𝑥 ∈ 𝒫 𝑌 ) |
| 113 | 109 112 | biimtrdi | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( 𝑥 ∈ ( 𝐽 qTop 𝐹 ) → 𝑥 ∈ 𝒫 𝑌 ) ) |
| 114 | 113 | ssrdv | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( 𝐽 qTop 𝐹 ) ⊆ 𝒫 𝑌 ) |
| 115 | sspwuni | ⊢ ( ( 𝐽 qTop 𝐹 ) ⊆ 𝒫 𝑌 ↔ ∪ ( 𝐽 qTop 𝐹 ) ⊆ 𝑌 ) | |
| 116 | 114 115 | sylib | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ∪ ( 𝐽 qTop 𝐹 ) ⊆ 𝑌 ) |
| 117 | 107 116 | eqsstrid | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ∪ ( topGen ‘ ( 𝐽 qTop 𝐹 ) ) ⊆ 𝑌 ) |
| 118 | sspwuni | ⊢ ( ( topGen ‘ ( 𝐽 qTop 𝐹 ) ) ⊆ 𝒫 𝑌 ↔ ∪ ( topGen ‘ ( 𝐽 qTop 𝐹 ) ) ⊆ 𝑌 ) | |
| 119 | 117 118 | sylibr | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( topGen ‘ ( 𝐽 qTop 𝐹 ) ) ⊆ 𝒫 𝑌 ) |
| 120 | 119 | sseld | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( 𝑥 ∈ ( topGen ‘ ( 𝐽 qTop 𝐹 ) ) → 𝑥 ∈ 𝒫 𝑌 ) ) |
| 121 | 120 111 | imbitrdi | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( 𝑥 ∈ ( topGen ‘ ( 𝐽 qTop 𝐹 ) ) → 𝑥 ⊆ 𝑌 ) ) |
| 122 | 121 | pm4.71rd | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( 𝑥 ∈ ( topGen ‘ ( 𝐽 qTop 𝐹 ) ) ↔ ( 𝑥 ⊆ 𝑌 ∧ 𝑥 ∈ ( topGen ‘ ( 𝐽 qTop 𝐹 ) ) ) ) ) |
| 123 | 98 105 122 | 3bitr4d | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( 𝑥 ∈ ( ( topGen ‘ 𝐽 ) qTop 𝐹 ) ↔ 𝑥 ∈ ( topGen ‘ ( 𝐽 qTop 𝐹 ) ) ) ) |
| 124 | 123 | eqrdv | ⊢ ( ( 𝐽 ∈ TopBases ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( ( topGen ‘ 𝐽 ) qTop 𝐹 ) = ( topGen ‘ ( 𝐽 qTop 𝐹 ) ) ) |