This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for axdc4uz . (Contributed by Mario Carneiro, 8-Jan-2014) (Revised by Mario Carneiro, 26-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axdc4uz.1 | ⊢ 𝑀 ∈ ℤ | |
| axdc4uz.2 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| axdc4uz.3 | ⊢ 𝐴 ∈ V | ||
| axdc4uz.4 | ⊢ 𝐺 = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 + 1 ) ) , 𝑀 ) ↾ ω ) | ||
| axdc4uz.5 | ⊢ 𝐻 = ( 𝑛 ∈ ω , 𝑥 ∈ 𝐴 ↦ ( ( 𝐺 ‘ 𝑛 ) 𝐹 𝑥 ) ) | ||
| Assertion | axdc4uzlem | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝐴 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axdc4uz.1 | ⊢ 𝑀 ∈ ℤ | |
| 2 | axdc4uz.2 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | axdc4uz.3 | ⊢ 𝐴 ∈ V | |
| 4 | axdc4uz.4 | ⊢ 𝐺 = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 + 1 ) ) , 𝑀 ) ↾ ω ) | |
| 5 | axdc4uz.5 | ⊢ 𝐻 = ( 𝑛 ∈ ω , 𝑥 ∈ 𝐴 ↦ ( ( 𝐺 ‘ 𝑛 ) 𝐹 𝑥 ) ) | |
| 6 | 1 4 | om2uzf1oi | ⊢ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝑀 ) |
| 7 | f1oeq3 | ⊢ ( 𝑍 = ( ℤ≥ ‘ 𝑀 ) → ( 𝐺 : ω –1-1-onto→ 𝑍 ↔ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝑀 ) ) ) | |
| 8 | 2 7 | ax-mp | ⊢ ( 𝐺 : ω –1-1-onto→ 𝑍 ↔ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝑀 ) ) |
| 9 | 6 8 | mpbir | ⊢ 𝐺 : ω –1-1-onto→ 𝑍 |
| 10 | f1of | ⊢ ( 𝐺 : ω –1-1-onto→ 𝑍 → 𝐺 : ω ⟶ 𝑍 ) | |
| 11 | 9 10 | ax-mp | ⊢ 𝐺 : ω ⟶ 𝑍 |
| 12 | 11 | ffvelcdmi | ⊢ ( 𝑛 ∈ ω → ( 𝐺 ‘ 𝑛 ) ∈ 𝑍 ) |
| 13 | fovcdm | ⊢ ( ( 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ ( 𝐺 ‘ 𝑛 ) ∈ 𝑍 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑛 ) 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) | |
| 14 | 12 13 | syl3an2 | ⊢ ( ( 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑛 ∈ ω ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑛 ) 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
| 15 | 14 | 3expb | ⊢ ( ( 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ ( 𝑛 ∈ ω ∧ 𝑥 ∈ 𝐴 ) ) → ( ( 𝐺 ‘ 𝑛 ) 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
| 16 | 15 | ralrimivva | ⊢ ( 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∀ 𝑛 ∈ ω ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑛 ) 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
| 17 | 5 | fmpo | ⊢ ( ∀ 𝑛 ∈ ω ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑛 ) 𝐹 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ↔ 𝐻 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
| 18 | 16 17 | sylib | ⊢ ( 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → 𝐻 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
| 19 | 3 | axdc4 | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐻 : ( ω × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑓 ( 𝑓 : ω ⟶ 𝐴 ∧ ( 𝑓 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) ) ) |
| 20 | 18 19 | sylan2 | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑓 ( 𝑓 : ω ⟶ 𝐴 ∧ ( 𝑓 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) ) ) |
| 21 | f1ocnv | ⊢ ( 𝐺 : ω –1-1-onto→ 𝑍 → ◡ 𝐺 : 𝑍 –1-1-onto→ ω ) | |
| 22 | f1of | ⊢ ( ◡ 𝐺 : 𝑍 –1-1-onto→ ω → ◡ 𝐺 : 𝑍 ⟶ ω ) | |
| 23 | 9 21 22 | mp2b | ⊢ ◡ 𝐺 : 𝑍 ⟶ ω |
| 24 | fco | ⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ ◡ 𝐺 : 𝑍 ⟶ ω ) → ( 𝑓 ∘ ◡ 𝐺 ) : 𝑍 ⟶ 𝐴 ) | |
| 25 | 23 24 | mpan2 | ⊢ ( 𝑓 : ω ⟶ 𝐴 → ( 𝑓 ∘ ◡ 𝐺 ) : 𝑍 ⟶ 𝐴 ) |
| 26 | 25 | 3ad2ant1 | ⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ ( 𝑓 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) ) → ( 𝑓 ∘ ◡ 𝐺 ) : 𝑍 ⟶ 𝐴 ) |
| 27 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 28 | 1 27 | ax-mp | ⊢ 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) |
| 29 | 28 2 | eleqtrri | ⊢ 𝑀 ∈ 𝑍 |
| 30 | fvco3 | ⊢ ( ( ◡ 𝐺 : 𝑍 ⟶ ω ∧ 𝑀 ∈ 𝑍 ) → ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑀 ) = ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑀 ) ) ) | |
| 31 | 23 29 30 | mp2an | ⊢ ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑀 ) = ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑀 ) ) |
| 32 | 1 4 | om2uz0i | ⊢ ( 𝐺 ‘ ∅ ) = 𝑀 |
| 33 | peano1 | ⊢ ∅ ∈ ω | |
| 34 | f1ocnvfv | ⊢ ( ( 𝐺 : ω –1-1-onto→ 𝑍 ∧ ∅ ∈ ω ) → ( ( 𝐺 ‘ ∅ ) = 𝑀 → ( ◡ 𝐺 ‘ 𝑀 ) = ∅ ) ) | |
| 35 | 9 33 34 | mp2an | ⊢ ( ( 𝐺 ‘ ∅ ) = 𝑀 → ( ◡ 𝐺 ‘ 𝑀 ) = ∅ ) |
| 36 | 32 35 | ax-mp | ⊢ ( ◡ 𝐺 ‘ 𝑀 ) = ∅ |
| 37 | 36 | fveq2i | ⊢ ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑀 ) ) = ( 𝑓 ‘ ∅ ) |
| 38 | 31 37 | eqtri | ⊢ ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑀 ) = ( 𝑓 ‘ ∅ ) |
| 39 | simp2 | ⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ ( 𝑓 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) ) → ( 𝑓 ‘ ∅ ) = 𝐶 ) | |
| 40 | 38 39 | eqtrid | ⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ ( 𝑓 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) ) → ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑀 ) = 𝐶 ) |
| 41 | 23 | ffvelcdmi | ⊢ ( 𝑘 ∈ 𝑍 → ( ◡ 𝐺 ‘ 𝑘 ) ∈ ω ) |
| 42 | 41 | adantl | ⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ 𝑘 ∈ 𝑍 ) → ( ◡ 𝐺 ‘ 𝑘 ) ∈ ω ) |
| 43 | suceq | ⊢ ( 𝑚 = ( ◡ 𝐺 ‘ 𝑘 ) → suc 𝑚 = suc ( ◡ 𝐺 ‘ 𝑘 ) ) | |
| 44 | 43 | fveq2d | ⊢ ( 𝑚 = ( ◡ 𝐺 ‘ 𝑘 ) → ( 𝑓 ‘ suc 𝑚 ) = ( 𝑓 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) ) |
| 45 | id | ⊢ ( 𝑚 = ( ◡ 𝐺 ‘ 𝑘 ) → 𝑚 = ( ◡ 𝐺 ‘ 𝑘 ) ) | |
| 46 | fveq2 | ⊢ ( 𝑚 = ( ◡ 𝐺 ‘ 𝑘 ) → ( 𝑓 ‘ 𝑚 ) = ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) | |
| 47 | 45 46 | oveq12d | ⊢ ( 𝑚 = ( ◡ 𝐺 ‘ 𝑘 ) → ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) = ( ( ◡ 𝐺 ‘ 𝑘 ) 𝐻 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) |
| 48 | 44 47 | eleq12d | ⊢ ( 𝑚 = ( ◡ 𝐺 ‘ 𝑘 ) → ( ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) ↔ ( 𝑓 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) ∈ ( ( ◡ 𝐺 ‘ 𝑘 ) 𝐻 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) ) |
| 49 | 48 | rspcv | ⊢ ( ( ◡ 𝐺 ‘ 𝑘 ) ∈ ω → ( ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) → ( 𝑓 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) ∈ ( ( ◡ 𝐺 ‘ 𝑘 ) 𝐻 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) ) |
| 50 | 42 49 | syl | ⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ 𝑘 ∈ 𝑍 ) → ( ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) → ( 𝑓 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) ∈ ( ( ◡ 𝐺 ‘ 𝑘 ) 𝐻 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) ) |
| 51 | 2 | peano2uzs | ⊢ ( 𝑘 ∈ 𝑍 → ( 𝑘 + 1 ) ∈ 𝑍 ) |
| 52 | fvco3 | ⊢ ( ( ◡ 𝐺 : 𝑍 ⟶ ω ∧ ( 𝑘 + 1 ) ∈ 𝑍 ) → ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) = ( 𝑓 ‘ ( ◡ 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) | |
| 53 | 23 51 52 | sylancr | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) = ( 𝑓 ‘ ( ◡ 𝐺 ‘ ( 𝑘 + 1 ) ) ) ) |
| 54 | 1 4 | om2uzsuci | ⊢ ( ( ◡ 𝐺 ‘ 𝑘 ) ∈ ω → ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) + 1 ) ) |
| 55 | 41 54 | syl | ⊢ ( 𝑘 ∈ 𝑍 → ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) + 1 ) ) |
| 56 | f1ocnvfv2 | ⊢ ( ( 𝐺 : ω –1-1-onto→ 𝑍 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) = 𝑘 ) | |
| 57 | 9 56 | mpan | ⊢ ( 𝑘 ∈ 𝑍 → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) = 𝑘 ) |
| 58 | 57 | oveq1d | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) + 1 ) = ( 𝑘 + 1 ) ) |
| 59 | 55 58 | eqtrd | ⊢ ( 𝑘 ∈ 𝑍 → ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) = ( 𝑘 + 1 ) ) |
| 60 | peano2 | ⊢ ( ( ◡ 𝐺 ‘ 𝑘 ) ∈ ω → suc ( ◡ 𝐺 ‘ 𝑘 ) ∈ ω ) | |
| 61 | 41 60 | syl | ⊢ ( 𝑘 ∈ 𝑍 → suc ( ◡ 𝐺 ‘ 𝑘 ) ∈ ω ) |
| 62 | f1ocnvfv | ⊢ ( ( 𝐺 : ω –1-1-onto→ 𝑍 ∧ suc ( ◡ 𝐺 ‘ 𝑘 ) ∈ ω ) → ( ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) = ( 𝑘 + 1 ) → ( ◡ 𝐺 ‘ ( 𝑘 + 1 ) ) = suc ( ◡ 𝐺 ‘ 𝑘 ) ) ) | |
| 63 | 9 61 62 | sylancr | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) = ( 𝑘 + 1 ) → ( ◡ 𝐺 ‘ ( 𝑘 + 1 ) ) = suc ( ◡ 𝐺 ‘ 𝑘 ) ) ) |
| 64 | 59 63 | mpd | ⊢ ( 𝑘 ∈ 𝑍 → ( ◡ 𝐺 ‘ ( 𝑘 + 1 ) ) = suc ( ◡ 𝐺 ‘ 𝑘 ) ) |
| 65 | 64 | fveq2d | ⊢ ( 𝑘 ∈ 𝑍 → ( 𝑓 ‘ ( ◡ 𝐺 ‘ ( 𝑘 + 1 ) ) ) = ( 𝑓 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) ) |
| 66 | 53 65 | eqtr2d | ⊢ ( 𝑘 ∈ 𝑍 → ( 𝑓 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) = ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) |
| 67 | 66 | adantl | ⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑓 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) = ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) |
| 68 | ffvelcdm | ⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ ( ◡ 𝐺 ‘ 𝑘 ) ∈ ω ) → ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ∈ 𝐴 ) | |
| 69 | 41 68 | sylan2 | ⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ∈ 𝐴 ) |
| 70 | fveq2 | ⊢ ( 𝑛 = ( ◡ 𝐺 ‘ 𝑘 ) → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) | |
| 71 | 70 | oveq1d | ⊢ ( 𝑛 = ( ◡ 𝐺 ‘ 𝑘 ) → ( ( 𝐺 ‘ 𝑛 ) 𝐹 𝑥 ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) 𝐹 𝑥 ) ) |
| 72 | oveq2 | ⊢ ( 𝑥 = ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) 𝐹 𝑥 ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) 𝐹 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) | |
| 73 | ovex | ⊢ ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) 𝐹 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ∈ V | |
| 74 | 71 72 5 73 | ovmpo | ⊢ ( ( ( ◡ 𝐺 ‘ 𝑘 ) ∈ ω ∧ ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ∈ 𝐴 ) → ( ( ◡ 𝐺 ‘ 𝑘 ) 𝐻 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) 𝐹 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) |
| 75 | 42 69 74 | syl2anc | ⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ 𝑘 ∈ 𝑍 ) → ( ( ◡ 𝐺 ‘ 𝑘 ) 𝐻 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) 𝐹 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) |
| 76 | fvco3 | ⊢ ( ( ◡ 𝐺 : 𝑍 ⟶ ω ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) = ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) | |
| 77 | 23 76 | mpan | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) = ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) |
| 78 | 77 | eqcomd | ⊢ ( 𝑘 ∈ 𝑍 → ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) = ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) |
| 79 | 57 78 | oveq12d | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) 𝐹 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) = ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) |
| 80 | 79 | adantl | ⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) 𝐹 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) = ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) |
| 81 | 75 80 | eqtrd | ⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ 𝑘 ∈ 𝑍 ) → ( ( ◡ 𝐺 ‘ 𝑘 ) 𝐻 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) = ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) |
| 82 | 67 81 | eleq12d | ⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑓 ‘ suc ( ◡ 𝐺 ‘ 𝑘 ) ) ∈ ( ( ◡ 𝐺 ‘ 𝑘 ) 𝐻 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ↔ ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) ) |
| 83 | 50 82 | sylibd | ⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ 𝑘 ∈ 𝑍 ) → ( ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) → ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) ) |
| 84 | 83 | impancom | ⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) ) → ( 𝑘 ∈ 𝑍 → ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) ) |
| 85 | 84 | ralrimiv | ⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) ) → ∀ 𝑘 ∈ 𝑍 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) |
| 86 | 85 | 3adant2 | ⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ ( 𝑓 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) ) → ∀ 𝑘 ∈ 𝑍 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) |
| 87 | vex | ⊢ 𝑓 ∈ V | |
| 88 | rdgfun | ⊢ Fun rec ( ( 𝑦 ∈ V ↦ ( 𝑦 + 1 ) ) , 𝑀 ) | |
| 89 | omex | ⊢ ω ∈ V | |
| 90 | resfunexg | ⊢ ( ( Fun rec ( ( 𝑦 ∈ V ↦ ( 𝑦 + 1 ) ) , 𝑀 ) ∧ ω ∈ V ) → ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 + 1 ) ) , 𝑀 ) ↾ ω ) ∈ V ) | |
| 91 | 88 89 90 | mp2an | ⊢ ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 + 1 ) ) , 𝑀 ) ↾ ω ) ∈ V |
| 92 | 4 91 | eqeltri | ⊢ 𝐺 ∈ V |
| 93 | 92 | cnvex | ⊢ ◡ 𝐺 ∈ V |
| 94 | 87 93 | coex | ⊢ ( 𝑓 ∘ ◡ 𝐺 ) ∈ V |
| 95 | feq1 | ⊢ ( 𝑔 = ( 𝑓 ∘ ◡ 𝐺 ) → ( 𝑔 : 𝑍 ⟶ 𝐴 ↔ ( 𝑓 ∘ ◡ 𝐺 ) : 𝑍 ⟶ 𝐴 ) ) | |
| 96 | fveq1 | ⊢ ( 𝑔 = ( 𝑓 ∘ ◡ 𝐺 ) → ( 𝑔 ‘ 𝑀 ) = ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑀 ) ) | |
| 97 | 96 | eqeq1d | ⊢ ( 𝑔 = ( 𝑓 ∘ ◡ 𝐺 ) → ( ( 𝑔 ‘ 𝑀 ) = 𝐶 ↔ ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑀 ) = 𝐶 ) ) |
| 98 | fveq1 | ⊢ ( 𝑔 = ( 𝑓 ∘ ◡ 𝐺 ) → ( 𝑔 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ) | |
| 99 | fveq1 | ⊢ ( 𝑔 = ( 𝑓 ∘ ◡ 𝐺 ) → ( 𝑔 ‘ 𝑘 ) = ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) | |
| 100 | 99 | oveq2d | ⊢ ( 𝑔 = ( 𝑓 ∘ ◡ 𝐺 ) → ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) = ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) |
| 101 | 98 100 | eleq12d | ⊢ ( 𝑔 = ( 𝑓 ∘ ◡ 𝐺 ) → ( ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ↔ ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) ) |
| 102 | 101 | ralbidv | ⊢ ( 𝑔 = ( 𝑓 ∘ ◡ 𝐺 ) → ( ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ↔ ∀ 𝑘 ∈ 𝑍 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) ) |
| 103 | 95 97 102 | 3anbi123d | ⊢ ( 𝑔 = ( 𝑓 ∘ ◡ 𝐺 ) → ( ( 𝑔 : 𝑍 ⟶ 𝐴 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ↔ ( ( 𝑓 ∘ ◡ 𝐺 ) : 𝑍 ⟶ 𝐴 ∧ ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) ) ) |
| 104 | 94 103 | spcev | ⊢ ( ( ( 𝑓 ∘ ◡ 𝐺 ) : 𝑍 ⟶ 𝐴 ∧ ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( ( 𝑓 ∘ ◡ 𝐺 ) ‘ 𝑘 ) ) ) → ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝐴 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 105 | 26 40 86 104 | syl3anc | ⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ ( 𝑓 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) ) → ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝐴 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 106 | 105 | exlimiv | ⊢ ( ∃ 𝑓 ( 𝑓 : ω ⟶ 𝐴 ∧ ( 𝑓 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑚 ∈ ω ( 𝑓 ‘ suc 𝑚 ) ∈ ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) ) → ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝐴 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 107 | 20 106 | syl | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝐴 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) |