This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for axdc4uz . (Contributed by Mario Carneiro, 8-Jan-2014) (Revised by Mario Carneiro, 26-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axdc4uz.1 | |- M e. ZZ |
|
| axdc4uz.2 | |- Z = ( ZZ>= ` M ) |
||
| axdc4uz.3 | |- A e. _V |
||
| axdc4uz.4 | |- G = ( rec ( ( y e. _V |-> ( y + 1 ) ) , M ) |` _om ) |
||
| axdc4uz.5 | |- H = ( n e. _om , x e. A |-> ( ( G ` n ) F x ) ) |
||
| Assertion | axdc4uzlem | |- ( ( C e. A /\ F : ( Z X. A ) --> ( ~P A \ { (/) } ) ) -> E. g ( g : Z --> A /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axdc4uz.1 | |- M e. ZZ |
|
| 2 | axdc4uz.2 | |- Z = ( ZZ>= ` M ) |
|
| 3 | axdc4uz.3 | |- A e. _V |
|
| 4 | axdc4uz.4 | |- G = ( rec ( ( y e. _V |-> ( y + 1 ) ) , M ) |` _om ) |
|
| 5 | axdc4uz.5 | |- H = ( n e. _om , x e. A |-> ( ( G ` n ) F x ) ) |
|
| 6 | 1 4 | om2uzf1oi | |- G : _om -1-1-onto-> ( ZZ>= ` M ) |
| 7 | f1oeq3 | |- ( Z = ( ZZ>= ` M ) -> ( G : _om -1-1-onto-> Z <-> G : _om -1-1-onto-> ( ZZ>= ` M ) ) ) |
|
| 8 | 2 7 | ax-mp | |- ( G : _om -1-1-onto-> Z <-> G : _om -1-1-onto-> ( ZZ>= ` M ) ) |
| 9 | 6 8 | mpbir | |- G : _om -1-1-onto-> Z |
| 10 | f1of | |- ( G : _om -1-1-onto-> Z -> G : _om --> Z ) |
|
| 11 | 9 10 | ax-mp | |- G : _om --> Z |
| 12 | 11 | ffvelcdmi | |- ( n e. _om -> ( G ` n ) e. Z ) |
| 13 | fovcdm | |- ( ( F : ( Z X. A ) --> ( ~P A \ { (/) } ) /\ ( G ` n ) e. Z /\ x e. A ) -> ( ( G ` n ) F x ) e. ( ~P A \ { (/) } ) ) |
|
| 14 | 12 13 | syl3an2 | |- ( ( F : ( Z X. A ) --> ( ~P A \ { (/) } ) /\ n e. _om /\ x e. A ) -> ( ( G ` n ) F x ) e. ( ~P A \ { (/) } ) ) |
| 15 | 14 | 3expb | |- ( ( F : ( Z X. A ) --> ( ~P A \ { (/) } ) /\ ( n e. _om /\ x e. A ) ) -> ( ( G ` n ) F x ) e. ( ~P A \ { (/) } ) ) |
| 16 | 15 | ralrimivva | |- ( F : ( Z X. A ) --> ( ~P A \ { (/) } ) -> A. n e. _om A. x e. A ( ( G ` n ) F x ) e. ( ~P A \ { (/) } ) ) |
| 17 | 5 | fmpo | |- ( A. n e. _om A. x e. A ( ( G ` n ) F x ) e. ( ~P A \ { (/) } ) <-> H : ( _om X. A ) --> ( ~P A \ { (/) } ) ) |
| 18 | 16 17 | sylib | |- ( F : ( Z X. A ) --> ( ~P A \ { (/) } ) -> H : ( _om X. A ) --> ( ~P A \ { (/) } ) ) |
| 19 | 3 | axdc4 | |- ( ( C e. A /\ H : ( _om X. A ) --> ( ~P A \ { (/) } ) ) -> E. f ( f : _om --> A /\ ( f ` (/) ) = C /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) ) |
| 20 | 18 19 | sylan2 | |- ( ( C e. A /\ F : ( Z X. A ) --> ( ~P A \ { (/) } ) ) -> E. f ( f : _om --> A /\ ( f ` (/) ) = C /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) ) |
| 21 | f1ocnv | |- ( G : _om -1-1-onto-> Z -> `' G : Z -1-1-onto-> _om ) |
|
| 22 | f1of | |- ( `' G : Z -1-1-onto-> _om -> `' G : Z --> _om ) |
|
| 23 | 9 21 22 | mp2b | |- `' G : Z --> _om |
| 24 | fco | |- ( ( f : _om --> A /\ `' G : Z --> _om ) -> ( f o. `' G ) : Z --> A ) |
|
| 25 | 23 24 | mpan2 | |- ( f : _om --> A -> ( f o. `' G ) : Z --> A ) |
| 26 | 25 | 3ad2ant1 | |- ( ( f : _om --> A /\ ( f ` (/) ) = C /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) -> ( f o. `' G ) : Z --> A ) |
| 27 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 28 | 1 27 | ax-mp | |- M e. ( ZZ>= ` M ) |
| 29 | 28 2 | eleqtrri | |- M e. Z |
| 30 | fvco3 | |- ( ( `' G : Z --> _om /\ M e. Z ) -> ( ( f o. `' G ) ` M ) = ( f ` ( `' G ` M ) ) ) |
|
| 31 | 23 29 30 | mp2an | |- ( ( f o. `' G ) ` M ) = ( f ` ( `' G ` M ) ) |
| 32 | 1 4 | om2uz0i | |- ( G ` (/) ) = M |
| 33 | peano1 | |- (/) e. _om |
|
| 34 | f1ocnvfv | |- ( ( G : _om -1-1-onto-> Z /\ (/) e. _om ) -> ( ( G ` (/) ) = M -> ( `' G ` M ) = (/) ) ) |
|
| 35 | 9 33 34 | mp2an | |- ( ( G ` (/) ) = M -> ( `' G ` M ) = (/) ) |
| 36 | 32 35 | ax-mp | |- ( `' G ` M ) = (/) |
| 37 | 36 | fveq2i | |- ( f ` ( `' G ` M ) ) = ( f ` (/) ) |
| 38 | 31 37 | eqtri | |- ( ( f o. `' G ) ` M ) = ( f ` (/) ) |
| 39 | simp2 | |- ( ( f : _om --> A /\ ( f ` (/) ) = C /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) -> ( f ` (/) ) = C ) |
|
| 40 | 38 39 | eqtrid | |- ( ( f : _om --> A /\ ( f ` (/) ) = C /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) -> ( ( f o. `' G ) ` M ) = C ) |
| 41 | 23 | ffvelcdmi | |- ( k e. Z -> ( `' G ` k ) e. _om ) |
| 42 | 41 | adantl | |- ( ( f : _om --> A /\ k e. Z ) -> ( `' G ` k ) e. _om ) |
| 43 | suceq | |- ( m = ( `' G ` k ) -> suc m = suc ( `' G ` k ) ) |
|
| 44 | 43 | fveq2d | |- ( m = ( `' G ` k ) -> ( f ` suc m ) = ( f ` suc ( `' G ` k ) ) ) |
| 45 | id | |- ( m = ( `' G ` k ) -> m = ( `' G ` k ) ) |
|
| 46 | fveq2 | |- ( m = ( `' G ` k ) -> ( f ` m ) = ( f ` ( `' G ` k ) ) ) |
|
| 47 | 45 46 | oveq12d | |- ( m = ( `' G ` k ) -> ( m H ( f ` m ) ) = ( ( `' G ` k ) H ( f ` ( `' G ` k ) ) ) ) |
| 48 | 44 47 | eleq12d | |- ( m = ( `' G ` k ) -> ( ( f ` suc m ) e. ( m H ( f ` m ) ) <-> ( f ` suc ( `' G ` k ) ) e. ( ( `' G ` k ) H ( f ` ( `' G ` k ) ) ) ) ) |
| 49 | 48 | rspcv | |- ( ( `' G ` k ) e. _om -> ( A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) -> ( f ` suc ( `' G ` k ) ) e. ( ( `' G ` k ) H ( f ` ( `' G ` k ) ) ) ) ) |
| 50 | 42 49 | syl | |- ( ( f : _om --> A /\ k e. Z ) -> ( A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) -> ( f ` suc ( `' G ` k ) ) e. ( ( `' G ` k ) H ( f ` ( `' G ` k ) ) ) ) ) |
| 51 | 2 | peano2uzs | |- ( k e. Z -> ( k + 1 ) e. Z ) |
| 52 | fvco3 | |- ( ( `' G : Z --> _om /\ ( k + 1 ) e. Z ) -> ( ( f o. `' G ) ` ( k + 1 ) ) = ( f ` ( `' G ` ( k + 1 ) ) ) ) |
|
| 53 | 23 51 52 | sylancr | |- ( k e. Z -> ( ( f o. `' G ) ` ( k + 1 ) ) = ( f ` ( `' G ` ( k + 1 ) ) ) ) |
| 54 | 1 4 | om2uzsuci | |- ( ( `' G ` k ) e. _om -> ( G ` suc ( `' G ` k ) ) = ( ( G ` ( `' G ` k ) ) + 1 ) ) |
| 55 | 41 54 | syl | |- ( k e. Z -> ( G ` suc ( `' G ` k ) ) = ( ( G ` ( `' G ` k ) ) + 1 ) ) |
| 56 | f1ocnvfv2 | |- ( ( G : _om -1-1-onto-> Z /\ k e. Z ) -> ( G ` ( `' G ` k ) ) = k ) |
|
| 57 | 9 56 | mpan | |- ( k e. Z -> ( G ` ( `' G ` k ) ) = k ) |
| 58 | 57 | oveq1d | |- ( k e. Z -> ( ( G ` ( `' G ` k ) ) + 1 ) = ( k + 1 ) ) |
| 59 | 55 58 | eqtrd | |- ( k e. Z -> ( G ` suc ( `' G ` k ) ) = ( k + 1 ) ) |
| 60 | peano2 | |- ( ( `' G ` k ) e. _om -> suc ( `' G ` k ) e. _om ) |
|
| 61 | 41 60 | syl | |- ( k e. Z -> suc ( `' G ` k ) e. _om ) |
| 62 | f1ocnvfv | |- ( ( G : _om -1-1-onto-> Z /\ suc ( `' G ` k ) e. _om ) -> ( ( G ` suc ( `' G ` k ) ) = ( k + 1 ) -> ( `' G ` ( k + 1 ) ) = suc ( `' G ` k ) ) ) |
|
| 63 | 9 61 62 | sylancr | |- ( k e. Z -> ( ( G ` suc ( `' G ` k ) ) = ( k + 1 ) -> ( `' G ` ( k + 1 ) ) = suc ( `' G ` k ) ) ) |
| 64 | 59 63 | mpd | |- ( k e. Z -> ( `' G ` ( k + 1 ) ) = suc ( `' G ` k ) ) |
| 65 | 64 | fveq2d | |- ( k e. Z -> ( f ` ( `' G ` ( k + 1 ) ) ) = ( f ` suc ( `' G ` k ) ) ) |
| 66 | 53 65 | eqtr2d | |- ( k e. Z -> ( f ` suc ( `' G ` k ) ) = ( ( f o. `' G ) ` ( k + 1 ) ) ) |
| 67 | 66 | adantl | |- ( ( f : _om --> A /\ k e. Z ) -> ( f ` suc ( `' G ` k ) ) = ( ( f o. `' G ) ` ( k + 1 ) ) ) |
| 68 | ffvelcdm | |- ( ( f : _om --> A /\ ( `' G ` k ) e. _om ) -> ( f ` ( `' G ` k ) ) e. A ) |
|
| 69 | 41 68 | sylan2 | |- ( ( f : _om --> A /\ k e. Z ) -> ( f ` ( `' G ` k ) ) e. A ) |
| 70 | fveq2 | |- ( n = ( `' G ` k ) -> ( G ` n ) = ( G ` ( `' G ` k ) ) ) |
|
| 71 | 70 | oveq1d | |- ( n = ( `' G ` k ) -> ( ( G ` n ) F x ) = ( ( G ` ( `' G ` k ) ) F x ) ) |
| 72 | oveq2 | |- ( x = ( f ` ( `' G ` k ) ) -> ( ( G ` ( `' G ` k ) ) F x ) = ( ( G ` ( `' G ` k ) ) F ( f ` ( `' G ` k ) ) ) ) |
|
| 73 | ovex | |- ( ( G ` ( `' G ` k ) ) F ( f ` ( `' G ` k ) ) ) e. _V |
|
| 74 | 71 72 5 73 | ovmpo | |- ( ( ( `' G ` k ) e. _om /\ ( f ` ( `' G ` k ) ) e. A ) -> ( ( `' G ` k ) H ( f ` ( `' G ` k ) ) ) = ( ( G ` ( `' G ` k ) ) F ( f ` ( `' G ` k ) ) ) ) |
| 75 | 42 69 74 | syl2anc | |- ( ( f : _om --> A /\ k e. Z ) -> ( ( `' G ` k ) H ( f ` ( `' G ` k ) ) ) = ( ( G ` ( `' G ` k ) ) F ( f ` ( `' G ` k ) ) ) ) |
| 76 | fvco3 | |- ( ( `' G : Z --> _om /\ k e. Z ) -> ( ( f o. `' G ) ` k ) = ( f ` ( `' G ` k ) ) ) |
|
| 77 | 23 76 | mpan | |- ( k e. Z -> ( ( f o. `' G ) ` k ) = ( f ` ( `' G ` k ) ) ) |
| 78 | 77 | eqcomd | |- ( k e. Z -> ( f ` ( `' G ` k ) ) = ( ( f o. `' G ) ` k ) ) |
| 79 | 57 78 | oveq12d | |- ( k e. Z -> ( ( G ` ( `' G ` k ) ) F ( f ` ( `' G ` k ) ) ) = ( k F ( ( f o. `' G ) ` k ) ) ) |
| 80 | 79 | adantl | |- ( ( f : _om --> A /\ k e. Z ) -> ( ( G ` ( `' G ` k ) ) F ( f ` ( `' G ` k ) ) ) = ( k F ( ( f o. `' G ) ` k ) ) ) |
| 81 | 75 80 | eqtrd | |- ( ( f : _om --> A /\ k e. Z ) -> ( ( `' G ` k ) H ( f ` ( `' G ` k ) ) ) = ( k F ( ( f o. `' G ) ` k ) ) ) |
| 82 | 67 81 | eleq12d | |- ( ( f : _om --> A /\ k e. Z ) -> ( ( f ` suc ( `' G ` k ) ) e. ( ( `' G ` k ) H ( f ` ( `' G ` k ) ) ) <-> ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) ) |
| 83 | 50 82 | sylibd | |- ( ( f : _om --> A /\ k e. Z ) -> ( A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) -> ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) ) |
| 84 | 83 | impancom | |- ( ( f : _om --> A /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) -> ( k e. Z -> ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) ) |
| 85 | 84 | ralrimiv | |- ( ( f : _om --> A /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) -> A. k e. Z ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) |
| 86 | 85 | 3adant2 | |- ( ( f : _om --> A /\ ( f ` (/) ) = C /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) -> A. k e. Z ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) |
| 87 | vex | |- f e. _V |
|
| 88 | rdgfun | |- Fun rec ( ( y e. _V |-> ( y + 1 ) ) , M ) |
|
| 89 | omex | |- _om e. _V |
|
| 90 | resfunexg | |- ( ( Fun rec ( ( y e. _V |-> ( y + 1 ) ) , M ) /\ _om e. _V ) -> ( rec ( ( y e. _V |-> ( y + 1 ) ) , M ) |` _om ) e. _V ) |
|
| 91 | 88 89 90 | mp2an | |- ( rec ( ( y e. _V |-> ( y + 1 ) ) , M ) |` _om ) e. _V |
| 92 | 4 91 | eqeltri | |- G e. _V |
| 93 | 92 | cnvex | |- `' G e. _V |
| 94 | 87 93 | coex | |- ( f o. `' G ) e. _V |
| 95 | feq1 | |- ( g = ( f o. `' G ) -> ( g : Z --> A <-> ( f o. `' G ) : Z --> A ) ) |
|
| 96 | fveq1 | |- ( g = ( f o. `' G ) -> ( g ` M ) = ( ( f o. `' G ) ` M ) ) |
|
| 97 | 96 | eqeq1d | |- ( g = ( f o. `' G ) -> ( ( g ` M ) = C <-> ( ( f o. `' G ) ` M ) = C ) ) |
| 98 | fveq1 | |- ( g = ( f o. `' G ) -> ( g ` ( k + 1 ) ) = ( ( f o. `' G ) ` ( k + 1 ) ) ) |
|
| 99 | fveq1 | |- ( g = ( f o. `' G ) -> ( g ` k ) = ( ( f o. `' G ) ` k ) ) |
|
| 100 | 99 | oveq2d | |- ( g = ( f o. `' G ) -> ( k F ( g ` k ) ) = ( k F ( ( f o. `' G ) ` k ) ) ) |
| 101 | 98 100 | eleq12d | |- ( g = ( f o. `' G ) -> ( ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) <-> ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) ) |
| 102 | 101 | ralbidv | |- ( g = ( f o. `' G ) -> ( A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) <-> A. k e. Z ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) ) |
| 103 | 95 97 102 | 3anbi123d | |- ( g = ( f o. `' G ) -> ( ( g : Z --> A /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) <-> ( ( f o. `' G ) : Z --> A /\ ( ( f o. `' G ) ` M ) = C /\ A. k e. Z ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) ) ) |
| 104 | 94 103 | spcev | |- ( ( ( f o. `' G ) : Z --> A /\ ( ( f o. `' G ) ` M ) = C /\ A. k e. Z ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) -> E. g ( g : Z --> A /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) ) |
| 105 | 26 40 86 104 | syl3anc | |- ( ( f : _om --> A /\ ( f ` (/) ) = C /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) -> E. g ( g : Z --> A /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) ) |
| 106 | 105 | exlimiv | |- ( E. f ( f : _om --> A /\ ( f ` (/) ) = C /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) -> E. g ( g : Z --> A /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) ) |
| 107 | 20 106 | syl | |- ( ( C e. A /\ F : ( Z X. A ) --> ( ~P A \ { (/) } ) ) -> E. g ( g : Z --> A /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) ) |