This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of axdc4 that works on an upper set of integers instead of _om . (Contributed by Mario Carneiro, 8-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axdc4uz.1 | ⊢ 𝑀 ∈ ℤ | |
| axdc4uz.2 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| Assertion | axdc4uz | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝐴 ∧ 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝐴 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axdc4uz.1 | ⊢ 𝑀 ∈ ℤ | |
| 2 | axdc4uz.2 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | eleq2 | ⊢ ( 𝑓 = 𝐴 → ( 𝐶 ∈ 𝑓 ↔ 𝐶 ∈ 𝐴 ) ) | |
| 4 | xpeq2 | ⊢ ( 𝑓 = 𝐴 → ( 𝑍 × 𝑓 ) = ( 𝑍 × 𝐴 ) ) | |
| 5 | pweq | ⊢ ( 𝑓 = 𝐴 → 𝒫 𝑓 = 𝒫 𝐴 ) | |
| 6 | 5 | difeq1d | ⊢ ( 𝑓 = 𝐴 → ( 𝒫 𝑓 ∖ { ∅ } ) = ( 𝒫 𝐴 ∖ { ∅ } ) ) |
| 7 | 4 6 | feq23d | ⊢ ( 𝑓 = 𝐴 → ( 𝐹 : ( 𝑍 × 𝑓 ) ⟶ ( 𝒫 𝑓 ∖ { ∅ } ) ↔ 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) ) |
| 8 | 3 7 | anbi12d | ⊢ ( 𝑓 = 𝐴 → ( ( 𝐶 ∈ 𝑓 ∧ 𝐹 : ( 𝑍 × 𝑓 ) ⟶ ( 𝒫 𝑓 ∖ { ∅ } ) ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) ) ) |
| 9 | feq3 | ⊢ ( 𝑓 = 𝐴 → ( 𝑔 : 𝑍 ⟶ 𝑓 ↔ 𝑔 : 𝑍 ⟶ 𝐴 ) ) | |
| 10 | 9 | 3anbi1d | ⊢ ( 𝑓 = 𝐴 → ( ( 𝑔 : 𝑍 ⟶ 𝑓 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ↔ ( 𝑔 : 𝑍 ⟶ 𝐴 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
| 11 | 10 | exbidv | ⊢ ( 𝑓 = 𝐴 → ( ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝑓 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ↔ ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝐴 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
| 12 | 8 11 | imbi12d | ⊢ ( 𝑓 = 𝐴 → ( ( ( 𝐶 ∈ 𝑓 ∧ 𝐹 : ( 𝑍 × 𝑓 ) ⟶ ( 𝒫 𝑓 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝑓 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) ↔ ( ( 𝐶 ∈ 𝐴 ∧ 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝐴 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) ) ) |
| 13 | vex | ⊢ 𝑓 ∈ V | |
| 14 | eqid | ⊢ ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 + 1 ) ) , 𝑀 ) ↾ ω ) = ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 + 1 ) ) , 𝑀 ) ↾ ω ) | |
| 15 | eqid | ⊢ ( 𝑛 ∈ ω , 𝑥 ∈ 𝑓 ↦ ( ( ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 + 1 ) ) , 𝑀 ) ↾ ω ) ‘ 𝑛 ) 𝐹 𝑥 ) ) = ( 𝑛 ∈ ω , 𝑥 ∈ 𝑓 ↦ ( ( ( rec ( ( 𝑦 ∈ V ↦ ( 𝑦 + 1 ) ) , 𝑀 ) ↾ ω ) ‘ 𝑛 ) 𝐹 𝑥 ) ) | |
| 16 | 1 2 13 14 15 | axdc4uzlem | ⊢ ( ( 𝐶 ∈ 𝑓 ∧ 𝐹 : ( 𝑍 × 𝑓 ) ⟶ ( 𝒫 𝑓 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝑓 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 17 | 12 16 | vtoclg | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐶 ∈ 𝐴 ∧ 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝐴 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) ) |
| 18 | 17 | 3impib | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝐴 ∧ 𝐹 : ( 𝑍 × 𝐴 ) ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝐴 ∧ ( 𝑔 ‘ 𝑀 ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝑔 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) |